The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.
A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?
The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.
I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.
B <<<<====== answer.
Explanation:
yusef adds all of the values in his data set and then divide by the number of values in the set. the actual density of iron is 7.874 g/ml .
To solve this problem we will use the concepts related to angular motion equations. Therefore we will have that the angular acceleration will be equivalent to the change in the angular velocity per unit of time.
Later we will use the relationship between linear velocity, radius and angular velocity to find said angular velocity and use it in the mathematical expression of angular acceleration.
The average angular acceleration

Here
= Angular acceleration
Initial and final angular velocity
There is not initial angular velocity,then

We know that the relation between the tangential velocity with the angular velocity is given by,

Here,
r = Radius
= Angular velocity,
Rearranging to find the angular velocity

Remember that the radius is half te diameter.
Now replacing this expression at the first equation we have,


Therefore teh average angular acceleration of each wheel is 
Answer:
46.4 s
Explanation:
5 minutes = 60 * 5 = 300 seconds
Let g = 9.8 m/s2. And
be the slope of the road, s be the distance of the road, a be the acceleration generated by Rob, 3a/4 is the acceleration generated by Jim . Both of their motions are subjected to parallel component of the gravitational acceleration
Rob equation of motion can be modeled as s = a_Rt_R^2/2 = a300^2/2 = 45000a[/tex]
Jim equation of motion is
As both of them cover the same distance
So Jim should start 346.4 – 300 = 46.4 seconds earlier than Rob in other to reach the end at the same time