answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
2 years ago
7

Two identical horizontal sheets of glass have a thin film of air of thickness t between them. The glass has refractive index 1.4

0. The thickness t of the air layer can be varied. Light with wavelength λ in air is at normal incidence onto the top of the air film. There is constructive interference between the light reflected at the top and bottom surfaces of the air film when its thickness is 700 nm. For the same wavelength of light the next larger thickness for which there is constructive interference is 980 nm.
a. What is the wavelength λ of the light when it is traveling in air?
b. What is the smallest thickness t of the air film for which there is constructive interference for this wavelength of light?

Physics
2 answers:
Novosadov [1.4K]2 years ago
8 0

Answer:

1.4x10^7m & 98nm

Explanation:

Pls the calculation is in the attached file

Gre4nikov [31]2 years ago
7 0

Answer:

the wavelength λ of the light when it is traveling in air = 560 nm

the smallest thickness t of the air film = 140 nm

Explanation:

From the question; the path difference is Δx = 2t  (since the condition of the phase difference in the maxima and minima gets interchanged)

Now for constructive interference;

Δx= (m+ \frac{1}{2} \lambda)

replacing ;

Δx = 2t   ; we have:

2t = (m+ \frac{1}{2} \lambda)

Given that thickness t = 700 nm

Then

2× 700 = (m+ \frac{1}{2} \lambda)     --- equation (1)

For thickness t = 980 nm that is next to constructive interference

2× 980 = (m+ \frac{1}{2} \lambda)     ----- equation (2)

Equating the difference of equation (2) and equation (1); we have:'

λ = (2 × 980) - ( 2× 700 )

λ = 1960 - 1400

λ = 560 nm

Thus;  the wavelength λ of the light when it is traveling in air = 560 nm

b)  

For the smallest thickness t_{min} ; \ \ \ m =0

∴ 2t_{min} =\frac{\lambda}{2}

t_{min} =\frac{\lambda}{4}

t_{min} =\frac{560}{4}

t_{min} =140 \ \  nm

Thus, the smallest thickness t of the air film = 140 nm

You might be interested in
A glider is gliding through the air at a height of 416 meters with a speed of 45.2 m/s. The glider dives to a height of 278 mete
Verdich [7]

Answer:

<em>The glider's new speed is 68.90 m/s</em>

Explanation:

<u>Principle Of Conservation Of Mechanical Energy</u>

The mechanical energy of a system is the sum of its kinetic and potential energy. When the only potential energy considered in the system is related to the height of an object, then it's called the gravitational potential energy. The kinetic energy of an object of mass m and speed v is

\displaystyle K=\frac{1}{2}mv^2

The gravitational potential energy when it's at a height h from the zero reference is

U=mgh

The total mechanical energy is

M=K+U

\displaystyle M=\frac{1}{2}mv^2+mgh

The principle of conservation of mechanical energy states the total energy is constant while no external force is applied to the system. One example of a non-conservative system happens when friction is considered since part of the energy is lost in its thermal manifestation.

The initial conditions of the problem state that our glider is glides at 416 meters with a speed of 45.2 m/s. The initial mechanical energy is

\displaystyle M_1=\frac{1}{2}m(45.2)v_o^2+m(9.8)(416)

Operating in terms of m

\displaystyle M_1=1021.52m+4076.8m

\displaystyle M_1=5098.32m

Then we know the glider dives to 278 meters and we need to know their final speed, let's call it v_f. The final mechanical energy is

\displaystyle M_2=\frac{1}{2}mv_f^2+m(9.8)(278)

Operating and factoring

\displaystyle M_2=m(\frac{1}{2}v_f^2+2724.4)

Both mechanical energies must be the same, so

\displaystyle m(\frac{1}{2}v_f^2+2724.4)=5098.32m

Simplifying by m and rearranging

\displaystyle \frac{v_f^2}{2}=5098.32-2724.4

Computing

v_f=\sqrt{4747.84}=68.90\ m/s

The glider's new speed is 68.90 m/s

8 0
2 years ago
cicadas produce a sound that has a frequency of 123 Hz. what is the wavelength of this sound in the air? the speed of sound in a
mojhsa [17]

Answer: 2.72 metres

Explanation:

Given that:

frequency of sound F = 123 Hz. wavelength of sound in the air = ?

speed of sound in air V = 334 m/s

Recall that wavelength is the distance covered by the wave after one complete cycle. It is measured in metres, and represented by the symbol λ.

So, apply V = F λ

λ = V /F

λ = 334m/s / 123Hz

λ = 2.72m

Thus, the wavelength of this sound in the air is 2.72 metres

4 0
2 years ago
What conclusion can be derived by comparing the central tendencies of the two data sets?
zhannawk [14.2K]
The answer is B. I don’t think I need to explain this,
Mean is average, Mode is the most common number, and Median is the middle number when you put the numbers is numerical order from least to greatest
3 0
2 years ago
Two students are playing paddle ball with a 5 kg spongy ball. If the ball is thrown at the batter with a speed of 5 m/s and boun
fenix001 [56]

Answer:

75 kgm/s

Explanation:

Impulse: This can be defined as the product of mass and change in velocity. The S.I unit is kgm/s.

From the question,

I = m(v-u)................... Equation 1

Where I = impulse, m = mass, v = final velocity, u = initial velocity.

Let the direction of the initial velocity be the positive direction.

Given: m = 5 kg, v = -10 m/s (bounce off), u = 5 m/s.

Substitute into equation 1

I = 5(-10-5)

I = 5(-15)

I = -75 kgm/s.

The negative sign tells that the impulse act in the same direction as the final velocity of the ball

Hence,

I = 75 kgm/s

3 0
2 years ago
A massive tractor rolls down a country road. in a perfectly inelastic collision, a small sports car runs into the machine from b
Helga [31]
The answer for this change in the magnitude of momentum is the same for both because momentum is always conserved so both vehicles have the identical change. 
So for determining who has the greater change in kinetic energy, momentum (P) = mv so P^2 = m^2 v^2 P^2 / 2m = 1/2 m v^2 = energy So the weightier the mass the smaller the energy change for the same momentum change so in here, the car has a greater change in kinetic energy.
5 0
2 years ago
Read 2 more answers
Other questions:
  • A car starts from rest and accelerates along a straight line path in one minute. It finally attains a velocity of 40 meters/seco
    6·1 answer
  • A space station consists of two donut-shaped living chambers, A and B, that have the radii shown in the drawing. As the station
    12·1 answer
  • A 2-ft-thick block constructed of wood (sg = 0.6) is submerged in oil (sg = 0.8), and has a 2-ft-thick aluminum (specific weight
    13·1 answer
  • A hair dryer with a resistance of 9.6 ohms operates at 120 volts for 2.5 minutes. The total electrical energy used by the dryer
    15·1 answer
  • SELECT TWO!!!!!!!!!!!!!!!!!! Two buses leave school moving in opposite directions. After 15 minutes, they are both 10 miles away
    11·2 answers
  • Sir Lance a Lost new draw bridge was designed poorly and stops at an angle of 20o below the horizontal. Sir Lost and his steed s
    9·1 answer
  • The flowers of the bunchberry plant open with astonishing force and speed, causing the pollen grains to be ejected out of the fl
    9·1 answer
  • Multiply the number 4.48E-8 by 5.2E-4 using Google. What is the correct answer in scientific notation?
    8·1 answer
  • Three sticks are arranged in such a way that they form a right triangle. The
    8·1 answer
  • Rita has two small containers, one holding a liquid and one holding a gas. Rita transfers the substances to two larger container
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!