Answer:
Diameter decreases by the diameter of 0.0312 m.
Explanation:
Given that,
Bulk modulus = 14.0 × 10¹⁰ N/m²
Diameter d = 2.20 m
Depth = 2.40 km
Pressure = ρ g h = 1030 × 9.81 × 2.4 × 1000
= 24.25 × 10⁶ N/m²
Volume = 

Bulk modulus is equal to

now



Δ r = -0.0156 m
change in diameter
Δ d = -2 × 0.0156
Δ d = -0.0312 m
Diameter decreases by the diameter of 0.0312 m.
Answer:
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).
Explanation:
The portion of UV-visible radiation that is absorbed implies that a portion of electromagnetic radiation is not absorbed by the sample and is therefore transmitted through it and can be captured by the human eye. That is, in the visible region of a complex, the visible color of a solution can be seen and that corresponds to the wavelengths of light it transmits, not absorbs. The absorbing color is complementary to the color it transmits.
So, in the attached image you can see the approximate wavelengths with the colors, where they locate the wavelength with the absorbed color, you will be able to observe the complementary color that is seen or reflected.
<u><em>
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).</em></u>
This can be answered using trigonometric analysis. This sloped path that is 150 m long is the hypotenuse of the triangle. The adjacent angle would then be 65 degrees. Given these:
sin 65 = h / 150
Where: h = vertical displacement = 150 (sin 65)
h = 135.95 meters
Answer:
Explanation:
Moment of inertia of larger disk I₁ = 1/2 MR²
Moment of inertia of smaller disk I₂ = 1/2 m r ²
Initial angular velocity
We shall apply law of conservation of angular momentum .
initial total momentum = final angular momentum
I₁ X ωi = ( I₁ + I₂ )ωf
1/2 MR² x ωi = 1/2 ( m r² + MR² ) ωf
ωf = ωi / ( 1 + m r²/MR² )
Explanation:
The work done equals the change in energy.
W = ΔKE
W = 0 − ½mv²
W = -½ (0.270 kg) (-7.50 m/s)²
W = -7.59 J
Work is force times displacement.
W = Fd
-7.59 J = F (-0.150 m)
F = 50.6 N