answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djyliett [7]
1 year ago
9

A pressure vessel that has a volume of 10m3 is used to store high-pressure air for operating a supersonic wind tunnel. If the ai

r pressure and temperature inside the vessel are 20 atm and 300K, respectively: What is the mass of air stored in the vessel
Physics
1 answer:
Anna71 [15]1 year ago
7 0

Answer:

The mass of air stored in the vessel is 235.34 kilograms.

Explanation:

Let supossed that air inside pressure vessel is an ideal gas, The density of the air (\rho), measured in kilograms per cubic meter, is defined by following equation:

\rho = \frac{P\cdot M}{R_{u}\cdot T} (1)

Where:

P - Pressure, measured in kilopascals.

M - Molar mass, measured in kilomoles per kilogram.

R_{u} - Ideal gas constant, measured in kilopascal-cubic meters per kilomole-Kelvin.

T - Temperature, measured in Kelvin.

If we know that P = 2026.5\,kPa, M = 28.965\,\frac{kg}{kmol}, R_{u} = 8.314\,\frac{kPa\cdot m^{2}}{kmol\cdot K} and T = 300\,K, then the density of air is:

\rho = \frac{(2026.5\,kPa)\cdot \left(28.965\,\frac{kg}{kmol} \right)}{\left(8.314\,\frac{kPa\cdot m^{2}}{kmol\cdot K} \right)\cdot (300\,K)}

\rho = 23.534\,\frac{kg}{m^{3}}

The mass of air stored in the vessel is derived from definition of density. That is:

m = \rho \cdot V (2)

Where m is the mass, measured in kilograms.

If we know that \rho = 23.534\,\frac{kg}{m^{3}} and V = 10\,m^{3}, then the mass of air stored in the vessel is:

m = \left(23.534\,\frac{kg}{m^{3}} \right)\cdot (10\,m^{3})

m = 235.34\,kg

The mass of air stored in the vessel is 235.34 kilograms.

You might be interested in
A car is traveling at 20 meters/second and is brought to rest by applying brakes over a period of 4 seconds. What is its average
frez [133]
 (u) = 20 m/s 
(v) = 0 m/s 
<span> (t) = 4 s 
</span>
<span>0 = 20 + a(4) 

</span><span>4 x a = -20 
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
8 0
2 years ago
Read 2 more answers
A charge of uniform volume density (40 nC/m3) fills a cube with 8.0-cm edges. What is the total electric flux through the surfac
GREYUIT [131]

Answer:

The flux through the surface of the cube is 2.314\ Nm^{2}/C

Solution:

As per the question:

Edge of the cube, a = 8.0 cm = 8.0\times 10^{- 2}\ m

Volume Charge density, \rho_{v} = 40 nC/m^{3} = 40\times {- 9}\ C/m^{3}

Now,

To calculate the electric flux:

\phi = \frac{q}{\epsilon_{o}}                                                      (1)

where

\phi = electric flux

\epsilon_{o} = 8.85\times 10^{- 12}\ F/m = permittivity of free space  

Volume Charge density for the given case is given by the formula:

\rho_{v} = \frac{Total\ charge, q}{Volume of cube, V}                  (2)

Volume of cube, V = a^{3}

Thus

V = (8.0\times 10^{- 2})^{3} = 5.12\times 10^{- 4}\ m^{3}

Thus from eqn (2), the total charge is given by:

q = \rho_{v}V = 40\times {- 9}\times 5.12\times 10^{- 4}

q = 2.048\times 10^{-11}\ F = 20.48\ pF

Now, substitute the value of 'q' in eqn (1):

\phi = \frac{2.048\times 10^{-11}}{8.85\times 10^{- 12}} = 2.314\ Nm^{2}/C

5 0
2 years ago
Which formula is used to find fluctuation of the shape of body
Sladkaya [172]

Answer:

varn=n1+1ehvkT–1

Explanation:

This is Einstein's equation.

5 0
2 years ago
Calculate the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s.
Aleonysh [2.5K]

De broglie wavelength, \lambda = \frac{h}{mv}, where h is the Planck's constant,  m is the mass and v is the velocity.

h = 6.63*10^{-34}

Mass of hydrogen atom,  m = 1.67*10^{-27}kg

v = 440 m/s

Substituting

   Wavelength \lambda = \frac{h}{mv} = \frac{6.63*10^{-34}}{1.67*10^{-27}*440} = 0.902 *10^{-9}m = 902 *10^{-12}m

1 pm = 10^{-12}m\\ \\ So , \lambda =902 pm

So  the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s is 902 pm

7 0
2 years ago
Lilli suggests that they explore the simulation starting with varying only a single parameter in order to understand the role of
mrs_skeptik [129]

Answer:

B.

Explanation:

One of the ways to address this issue is through the options given by the statement. The concepts related to the continuity equation and the Bernoulli equation.

Through these two equations it is possible to observe the behavior of the fluid, specifically the velocity at a constant height.

By definition the equation of continuity is,

A_1V_1=A_2V_2

In the problem A_2 is 2A_1, then

A_1V_1=2A_1V_2

V_2 = \frac{V_1}{2}

<em>Here we can conclude that by means of the continuity when increasing the Area, a decrease will be obtained - in the diminished times in the area - in the speed.</em>

For the particular case of Bernoulli we have to

P_1 + \frac{1}{2}\rho V_1^2 = P_2 +\frac{1}{2}\rho V_2^2

P_2-P_1 = \frac{1}{2} \rho (V_1^2-V_2^2)

For the previous definition we can now replace,

P_2-P_1 = \frac{1}{2} \rho (V_1^2-(\frac{V_1}{2})^2)

\Delta P =  \frac{3}{8} \rho V_1^2

<em>Expressed from Bernoulli's equation we can identify that the greater the change that exists in pressure, fluid velocity will tend to decrease</em>

The correct answer is B: "If we increase A2 then by the continuity equation the speed of the fluid should decrease. Bernoulli's equation then shows that if the velocity of the fluid decreases (at constant height conditions) then the pressure of the fluid should increase"

4 0
2 years ago
Other questions:
  • Assume that a cloud consists of tiny water droplets suspended (uniformly distributed,
    13·1 answer
  • Dylan has two cubes of iron. The larger cube has twice the mass of the smaller cube. He measures the smaller cube. Its mass is 2
    15·2 answers
  • A 0.10 kg piece of copper at an initial temperature of 95°c is dropped into 0.20 kg of water contained in a 0.28 kg aluminum cal
    6·1 answer
  • How does melting And burning sugar follow the law of conservation of mass
    8·2 answers
  • A hummingbird can a flutter its wings 4800 times per minute what is the frequency of wing flutters per second
    5·2 answers
  • Tendons are strong elastic fibers that attach muscles to bones. To a reasonable approximation, they obey Hooke's law. In laborat
    14·1 answer
  • Galactic Alliance Junior Mission Officer (GAJMO) Bundit Nermalloy is predicting the kinetic energy of a supply spacecraft, which
    12·1 answer
  • A large solar panel on a spacecraft in Earth orbit produces 1.0 kW of power when the panel is turned toward the sun. What power
    9·1 answer
  • Tyler drives 50km north. Tyler then drives back 30km south. What distance did he cover? What was his displacement?
    11·1 answer
  • 1 Which requires more work, lifting a 10kg sack of<br> coal or lifting a 15kg bag of feathers?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!