Answer:
3311N
Explanation:
r = radius = 600m
V = speed = 150m/s
Mass = weight = 70kg
The weight of pilot when calculated due to circular motion
W = tv
Fv = mv²/r
Fv = 70x150²/600
Fv = 79x22500/600
= 15750000/600
= 2625N
Real Weight of the pilot = m x g
= 70 x 9.8
= 686N
The apparent Weight is calculated by
Mv²/r + mg
= 2625N + 686N
= 3311 N
Therefore the apparent Weight is 3311N
Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
Answer:
Explanation:
Electric field due to charge at origin
= k Q / r²
k is a constant , Q is charge and r is distance
= 9 x 10⁹ x 5 x 10⁻⁶ / .5²
= 180 x 10³ N /C
In vector form
E₁ = 180 x 10³ j
Electric field due to q₂ charge
= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²
= 30.33 x 10³ N / C
It will have negative slope θ with x axis
Tan θ = .5 / √.5² + .8²
= .5 / .94
θ = 28°
E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j
= 26.78 x 10³ i - 14.24 x 10³ j
Total electric field
E = E₁ + E₂
= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j
= 26.78 x 10³ i + 165.76 X 10³ j
magnitude
= √(26.78² + 165.76² ) x 10³ N /C
= 167.8 x 10³ N / C .
Answer:
a) 
b) 
c) Compressing is easier
Explanation:
Given:
Expression of force:

where:



when the spring is stretched
when the spring is compressed
hence,

a)
From the work energy equivalence the work done is equal to the spring potential energy:
here the spring is stretched so, 
Now,
The spring constant at this instant:



Now work done:



b)
When compressing the spring by 0.05 m
we have, 
<u>The spring constant at this instant:</u>



Now work done:



c)
Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.