Answer:
v = 2.21 m/s
Explanation:
The foreman had released the box from rest at a height of 0.25 m above the ground.
We need to find the speed of the crate when it reaches the bottom of the ramp. Let v is the velocity at the bottom of the ramp. It can be calculated using conservation of energy as follows :

So, its velocity at the bottom of the ramp is 2.21 m/s.
Answer:
Energy needed = 1100 kJ
Explanation:
Energy needed = Change in kinetic energy
Initial velocity = 15 m/s
Mass, m = 1600 kg

Final velocity = 40 m/s

Energy needed = Change in kinetic energy = 1280000-180000 = 1100000J
Energy needed = 1100 kJ
Answer:
178200
g mile pounds
Explanation:
Work= Force * Distance= Fh
F=ma=mg where m is mass and g is acceleration due to gravity
Work= 165 pounds *g* 1080 m= 178200
g mile pounds
This can be answered using trigonometric analysis. This sloped path that is 150 m long is the hypotenuse of the triangle. The adjacent angle would then be 65 degrees. Given these:
sin 65 = h / 150
Where: h = vertical displacement = 150 (sin 65)
h = 135.95 meters