answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maw [93]
2 years ago
11

If no friction acts on a diver during a dive, then which of the following statements is true? A) The total mechanical energy of

the system increases. B) Potential energy can be converted into kinetic energy but not vice versA) . C) (KE+ PE) beginning = (KE + PE) end . D) all of the above

Physics
2 answers:
EleoNora [17]2 years ago
4 0
If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.

Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).

The initial PE = mgh₁ and the initial KE  = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
 
Therefore
(KE + PE) ₁ = (KE + PE)₂

Evaluate the given answers.
A) The total mechanical energy of the system increases.
     FALSE

B) Potential energy can be converted into kinetic energy but not vice versa.
     TRUE

C) (KE + PE)beginning = (KE + PE) end.
     TRUE

D) All of the above.
     FALSE

fiasKO [112]2 years ago
3 0

Option (C) is correct .i.e. {(KE + PE)_{initial}} = {\left( {KE + PE} \right)_{final}}.

Further Explanation:

For an isolated system, the total mechanical energy is always conserved if no friction or resisting or drag force is considered.

{\text{Total}}\,{\text{mechanical}}\,{\text{energy}}\,{\text{ =}}\,{\text{constant}}       ………. (1)

Therefore, <u>option (A) is incorrect.</u>

Also, both the potential energy and the kinetic energy are Inter-convertible. As the diver dives and follows a parabolic path, jumps up with some initial velocity and thus has a significant amount of kinetic energy and at the highest point the vertical component of the velocity becomes zero and whole of the kinetic energy get converted into potential energy then as it moves through space downwards the potential energy decreases and the diver gets its kinetic energy back.

Therefore, <u>option (B) is incorrect.</u>

The sum of the kinetic energy and the potential energy of the system initially will remain equal to the sum of the kinetic energy and the potential energy at the final stage of the system.

Now, from equation (1),

\begin{aligned}\text{kinetic energy+potential energy}&=\text{mechanical constant}\\KE+PE&={\text{constant}}\\{\left( {KE + PE} \right)_{initial}}&={\left( {KE + PE} \right)_{final}}\\\end{aligned}

Therefore, <u>option (C) is correct.</u>

Learn more:

1. Suppose you have a 120kg wooden crate resting on a wood floor brainly.com/question/10470406

2. Two children fight over a 200 g stuffed bear. the 25 kg boy pulls brainly.com/question/6268248

Answer Details:

Grade: high school

Subject: Physics

Chapter: mechanics

Keywords:

kinetic energy, potential energy, mechanical energy, diver, dive, velocity, conservation of mechanical energy, constant, total energy of system.

You might be interested in
A teacher uses the model that little invisible gremlins speed up or slow down objects and the direction they push gives the dire
Vlada [557]
Newtons second law.. <span>The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.</span>
4 0
1 year ago
Read 2 more answers
Shareen performs a skit to model a method of charging. In the skit, a painter shakes her hand and gets paint on her.
Veseljchak [2.6K]

Answer:

It models conduction because the painter represents a charged object and the paint represents electrons that are transferred through contact.

Explanation:

Conduction phenomenon of charging is the process of charging in which two bodies are made in contact with each other so that charges are transferred due to potential difference of two bodies.

here we know that when hands are shake then it will have paint on it. so here due to hand shake the hands are in contact with charge particles and due to contact the electrons are transferred to the hand.

Now here we need to assume that charge of paint must be opposite that of the charge on the hand because only due to opposite charge attraction the paint must be transferred to the hand

SO here correct answer will be

It models conduction because the painter represents a charged object and the paint represents electrons that are transferred through contact.

5 0
1 year ago
Read 2 more answers
A police officer draws a sketch of the scene of an accident, as shown.
iren2701 [21]
I would have to say that it is Y
5 0
1 year ago
Read 2 more answers
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Tresset [83]

Complete Question

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

I = 1.2 A at time 5 secs.

Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.

Answer:

The charge is  Q =2.094 C

Explanation:

From the question we are told that

    The diameter of the wire is  d =  0.205cm = 0.00205 \ m

     The radius of  the wire is  r =  \frac{0.00205}{2} = 0.001025  \ m

     The resistivity of aluminum is 2.75*10^{-8} \ ohm-meters.

       The electric field change is mathematically defied as

         E (t) =  0.0004t^2 - 0.0001 +0.0004

     

Generally the charge is  mathematically represented as

       Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt

Where A is the area which is mathematically represented as

       A =  \pi r^2 =  (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2

 So

       \frac{A}{\rho} =  \frac{3.3 *10^{-6}}{2.75 *10^{-8}} =  120.03 \ m / \Omega

Therefore

      Q = 120 \int\limits^{t}_{0} { E(t) } \, dt

substituting values

      Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt

     Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | t} \atop {0}} \right.

From the question we are told that t =  5 sec

           Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | 5} \atop {0}} \right.

          Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }

         Q =2.094 C

     

5 0
2 years ago
Two billiard balls of equal mass move at right angles and meet at the origin of an xy coordinate system. Initially ball A is mov
frez [133]

Answer:

Speed of ball A after collision is 3.7 m/s

Speed of ball B after collision is 2 m/s

Direction of ball A after collision is towards positive x axis

Total momentum after collision is m×4·21 kgm/s

Total kinetic energy after collision is m×8·85 J

Explanation:

<h3>If we consider two balls as a system as there is no external force initial momentum of the system must be equal to the final momentum of the system</h3>

Let the mass of each ball be m kg

v_{1} be the velocity of ball A along positive x axis

v_{2} be the velocity of ball A along positive y axis

u be the velocity of ball B along positive y axis

Conservation of momentum along x axis

m×3·7 = m× v_{1}

∴  v_{1} = 3.7 m/s along positive x axis

Conservation of momentum along y axis

m×2 = m×u + m× v_{2}

2 = u +  v_{2} → equation 1

<h3>Assuming that there is no permanent deformation between the balls we can say that it is an elastic collision</h3><h3>And for an elastic collision, coefficient of restitution = 1</h3>

∴ relative velocity of approach = relative velocity of separation

-2 =  v_{2} - u → equation 2

By adding both equations 1 and 2 we get

v_{2} = 0

∴ u = 2 m/s along positive y axis

Kinetic energy before collision and after collision remains constant because it is an elastic collision

Kinetic energy = (m×2² + m×3·7²)÷2

                         = 8·85×m J

Total momentum = m×√(2² + 3·7²)

                             = m× 4·21 kgm/s

3 0
2 years ago
Other questions:
  • A car approaching a stationary observer emits 450. hz from its horn. if the observer detects a frequency pf 470. hz, how fast is
    12·1 answer
  • A beam of electrons moves at right angles to a magnetic field of 4.5 × 10-2 tesla. If the electrons have a velocity of 6.5 × 106
    14·1 answer
  • 7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
    5·1 answer
  • An open-topped freight car with mass 24,000 kg is coasting without friction along a level track. It is raining very hard, and th
    15·1 answer
  • A uniform 40-N board supports two children weighing 500 N and 350 N. If the support is at the center of the board and the 500-N
    5·1 answer
  • How long does it take for Saturn's equatorial flow, moving at 1500km/h, to encircle the planet?
    14·2 answers
  • 10 C of charge are placed on a spherical conducting shell. A point particle with a charge of –3C is placed at the center of the
    15·1 answer
  • The value of gravitational acceleration of a body on Earth is 9.8 meters/second2. The gravitational potential energy for a 1.00
    6·1 answer
  • A dolphin swims due east for 1.90 km, then swims 7.20 km in the direction south of west. What are the magnitude and direction of
    15·1 answer
  • A piece of wood that floats on water has a mass of 0.0175 kg. A lead weight is tied to the wood, and the apparent mass with the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!