answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
2 years ago
14

If the current in a wire increases from 5 A to 10 A, what happens to its magnetic field? If the distance of a charged particle f

rom a wire changes from 10 cm to 20 cm, what happens to its magnetic field? If the charge of a particle changes from 2 µC to –2µC, what happens to the force exerted on that particle?
Physics
2 answers:
dsp732 years ago
7 0

1. The magnitude of the magnetic field doubles

Explanation: the intensity of the magnetic field produced by a current-carrying wire is given by:

I=\frac{\mu_0 I}{2 \pi r}

where \mu_0 is the vacuum permeability, I is the current in the wire, r is the distance from the wire.

As we see from the formula, the intensity of the magnetic field is directly proportional to the current: if the current increases from 5 A to 10 A, it means it doubles, so the magnetic field doubles as well.

2. The magnitude of the magnetic field halves

Explanation: the intensity of the magnetic field produced by a current-carrying wire is given by:

I=\frac{\mu_0 I}{2 \pi r}

We see that the magnitude of the magnetic field is inversely proportional to the distance from the wire (r). In this case, the distance of the particle is changed from 10 cm to 20 cm, so it is doubled: therefore, the magnitude of the field will become half of the initial value.

3. The force reverses direction

Explanation: the force exerted on a charged particle in a magnetic field is:

F=qvB sin \theta

where q is the charge, v is the speed of the particle, B is the magnetic field intensity and \theta the angle between the direction of v and B. If the charge of the particle is switched from 2 µC to –2µC, the magnitude of the force does not change (because the absolute value of q does not change), however the charge q gets a negative sign (-), so the sign of the force changes and gets a negative sign too, so the force reverses direction.

Natali [406]2 years ago
4 0

Answer:

1. If the current in a wire increases from 5 A to 10 A, what happens to its magnetic field?

Answer: The field is twice as strong

2. If the distance of a charged particle from a wire changes from 10 cm to 20 cm, what happens to its magnetic field?

Answer: The field is half as strong

3. If the charge of a particle changes from 2 µC to –2µC, what happens to the force exerted on that particle?

Answer: The force is reserved

You might be interested in
If a young protostar with a disk is rotating and shrinking. how much faster is it rotating after its size has decreased by a fac
maks197457 [2]
In this system we have the conservation of angular momentum: L₁ = L₂
We can write L = m·r²·ω

Therefore, we will have:
m₁ · r₁² · ω₁ = m₂ · r₂² · ω₂

The mass stays constant, therefore it cancels out, and we can solve for ω<span>₂:
</span>ω₂ =  (r₁/ r₂)² · ω<span>₁
     
Since we know that r</span>₁ = 4r<span>₂, we get:
</span>ω₂ =  (4)² · ω<span>₁
     = 16 </span>· ω<span>₁

Hence, the protostar will be rotating 16 </span><span>times faster.</span>
5 0
2 years ago
Two long, parallel wires carry unequal currents in the same direction. The ratio of the currents is 3 to 1. The magnitude of the
astraxan [27]

Answer:

3A is the larger of the two currents.

Explanation:

Let the currents in the two wires be I₁ and I₂

given:

Magnitude of the electric field, B = 4.0μT = 4.0×10⁻⁶T

Distance, R = 10cm = 0.1m

Ratio of the current = I₁ : I₂ = 3 : 1

Now, the magnitude of a magnetic field at a distance 'R' due to the current 'I' is given as

B = \frac{\mu_oI}{2\pi R}

Where \mu_o is the magnitude constant = 4π×10⁻⁷ H/m

Thus, the magnitude of a magnetic field due to I₁ will be

B_1 = \frac{\mu_oI_1}{2\pi R}

B_2 = \frac{\mu_oI_2}{2\pi R}

given,

B = B₁ - B₂ (since both the currents are in the same direction and parallel)

substituting the values of B, B₁ and B₂

we get

4.0×10⁻⁶T =  \frac{\mu_oI_1}{2\pi R} - \frac{\mu_oI_2}{2\pi R}

or

4.0×10⁻⁶T =  \frac{\mu_o}{2\pi R}\times (I_1-I_2 )

also

\frac{I_1}{I_2} = \frac{3}{1}

⇒I_1 = 3\times I_2

substituting the values in the above equation we get

4.0×10⁻⁶T =  \frac{4\pi\times 10^{-7}}{2\pi 0.1}\times (3 I_2-I_2)

⇒I_2 = 1A

also

I_1 = 3\times I_2

⇒I_1 = 3\times 1A

⇒I_1 = 3A

Hence, the larger of the two currents is 3A

3 0
2 years ago
A certain satellite travels in an approximately circular orbit of radius 2.0 × 106 m with a period of 7 h 11 min. Calculate the
kap26 [50]

Answer: Mass of the planet, M= 8.53 x 10^8kg

Explanation:

Given Radius = 2.0 x 106m

Period T = 7h 11m

Using the third law of kepler's equation which states that the square of the orbital period of any planet is proportional to the cube of the semi-major axis of its orbit.

This is represented by the equation

T^2 = ( 4π^2/GM) R^3

Where T is the period in seconds

T = (7h x 60m + 11m)(60 sec)

= 25860 sec

G represents the gravitational constant

= 6.6 x 10^-11 N.m^2/kg^2 and M is the mass of the planet

Making M the subject of the formula,

M = (4π^2/G)*R^3/T^2

M = (4π^2/ 6.6 x10^-11)*(2×106m)^3(25860s)^2

Therefore Mass of the planet, M= 8.53 x 10^8kg

5 0
2 years ago
An automobile accelerates from zero to 30 m/s in 6.0 s. The wheels have a diameter of 0.40 m. What is the average angular accele
leva [86]

To solve this problem we will use the concepts related to angular motion equations. Therefore we will have that the angular acceleration will be equivalent to the change in the angular velocity per unit of time.

Later we will use the relationship between linear velocity, radius and angular velocity to find said angular velocity and use it in the mathematical expression of angular acceleration.

The average angular acceleration

\alpha = \frac{\omega_f - \omega_0}{t}

Here

\alpha = Angular acceleration

\omega_{f,i} = Initial and final angular velocity

There is not initial angular velocity,then

\alpha = \frac{\omega_f}{t}

We know that the relation between the tangential velocity with the angular velocity is given by,

v = r\omega

Here,

r = Radius

\omega = Angular velocity,

Rearranging to find the angular velocity

\omega = \frac{v}{r}}

\omega = \frac{30}{0.20} \rightarrow Remember that the radius is half te diameter.

Now replacing this expression at the first equation we have,

\alpha = \frac{30}{0.20*6}

\alpha = 25 rad /s^2

Therefore teh average angular acceleration of each wheel is 25rad/s^2

3 0
2 years ago
The trough of the sine curve used to represent a sound wave corresponds to
iren [92.7K]

Answer:

The correct answer is a rarefaction.

Explanation:

Sound waves are longitudinal waves that propagate in a medium, such as air. As the vibration continues, a series of successive condensations and rarefactions form and propagate from it. The pattern created in the air is something like a sinusoidal curve to represent a sound wave.

There are peaks in the sine wave at the points where the sound wave has condensations and valleys where it has rarefactions.

Have a nice day!

4 0
2 years ago
Other questions:
  • Consider two objects whose masses are 100 g and 200 g. The smaller object strikes the larger object with a force of 500 N. Accor
    11·2 answers
  • When a driver presses the brake pedal, his car stops with an acceleration of -2.1 m/s2. How far will the car travel while coming
    8·1 answer
  • The stimuli for kinesthesis is the __________ energy of joint and muscle movement. A. thermal B. electrical C. mechanical D. che
    13·2 answers
  • A 5.00-kg ball is hanging from a long but very light flexible wire when it is struck by a 1.50-kg stone traveling horizontally t
    12·2 answers
  • A bowling ball has a mass of 5.5 kg and a radius of 12.0 cm. It is released so that
    7·1 answer
  • A metal sphere of radius 10 cm carries a charge of +2.0 μC uniformly distributed over its surface. What is the magnitude of the
    12·1 answer
  • One component of a metal sculpture consists of a solid cube with an edge of length 38.9 cm. The alloy used to make the cube has
    10·1 answer
  • A rotating beacon is located 2 miles out in the water. Let A be the point on the shore that is closest to the beacon. As the bea
    8·1 answer
  • A man attempts to pick up his suitcase of weight w_s by pulling straight up on the handle. (Part A figure) However, he is unable
    6·1 answer
  • An object of mass M is dropped near the surface of Earth such that the gravitational field provides a constant downward force on
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!