answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilia_Sergeevich [38]
2 years ago
14

If the current in a wire increases from 5 A to 10 A, what happens to its magnetic field? If the distance of a charged particle f

rom a wire changes from 10 cm to 20 cm, what happens to its magnetic field? If the charge of a particle changes from 2 µC to –2µC, what happens to the force exerted on that particle?
Physics
2 answers:
dsp732 years ago
7 0

1. The magnitude of the magnetic field doubles

Explanation: the intensity of the magnetic field produced by a current-carrying wire is given by:

I=\frac{\mu_0 I}{2 \pi r}

where \mu_0 is the vacuum permeability, I is the current in the wire, r is the distance from the wire.

As we see from the formula, the intensity of the magnetic field is directly proportional to the current: if the current increases from 5 A to 10 A, it means it doubles, so the magnetic field doubles as well.

2. The magnitude of the magnetic field halves

Explanation: the intensity of the magnetic field produced by a current-carrying wire is given by:

I=\frac{\mu_0 I}{2 \pi r}

We see that the magnitude of the magnetic field is inversely proportional to the distance from the wire (r). In this case, the distance of the particle is changed from 10 cm to 20 cm, so it is doubled: therefore, the magnitude of the field will become half of the initial value.

3. The force reverses direction

Explanation: the force exerted on a charged particle in a magnetic field is:

F=qvB sin \theta

where q is the charge, v is the speed of the particle, B is the magnetic field intensity and \theta the angle between the direction of v and B. If the charge of the particle is switched from 2 µC to –2µC, the magnitude of the force does not change (because the absolute value of q does not change), however the charge q gets a negative sign (-), so the sign of the force changes and gets a negative sign too, so the force reverses direction.

Natali [406]2 years ago
4 0

Answer:

1. If the current in a wire increases from 5 A to 10 A, what happens to its magnetic field?

Answer: The field is twice as strong

2. If the distance of a charged particle from a wire changes from 10 cm to 20 cm, what happens to its magnetic field?

Answer: The field is half as strong

3. If the charge of a particle changes from 2 µC to –2µC, what happens to the force exerted on that particle?

Answer: The force is reserved

You might be interested in
a 4357 kg roller coaster car starts from rest at the top of a 36.5 m high track. determine the speed of the car at the top of a
andrey2020 [161]
The correct answer is 17.24 m/s. You get the answer by subtracting the two heights of the tracks which are 36.5 and 10.8 m, and the answer is 25.7. Since you already know the height at which the kinetic energy will be coming from, you then divide the amount of weight the roller coaster has to the distance it needs to travel in order for you to determine the speed of the car. So that is, 4,357 kg and 25.7 m and the answer is 169 kg/m. Dividing it to the earth's gravity of 9.8 m/s you'll get 17.24 m/s.
4 0
2 years ago
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
SpyIntel [72]

Answer:

A) F_g = 26284.48 N

B) v = 7404.18 m/s

C) E = 19.19 × 10^(10) J

Explanation:

We are given;

Mass of satellite; m = 3500 kg

Mass of the earth; M = 6 x 10²⁴ Kg

Earth circular orbit radius; R = 7.3 x 10⁶ m

A) Formula for the gravitational force is;

F_g = GmM/r²

Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Plugging in the relevant values, we have;

F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²

F_g = 26284.48 N

B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.

Thus;

GmM/r² = mv²/r

Making v th subject, we have;

v = √(GM/r)

Plugging in the relevant values;

v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))

v = 7404.18 m/s

C) From the energy principle, the minimum amount of work is given by;

E = (GmM/r) - ½mv²

Plugging in the relevant values;

E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)

E = 19.19 × 10^(10) J

5 0
2 years ago
When the Glen Canyon hydroelectric power plant in Arizona is running at capacity, 690 m3 of water flows through the dam each sec
bixtya [17]

Answer:

1340.2MW

Explanation:

Hi!

To solve this problem follow the steps below!

1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid

W=αhQ

α=specific weight for water =9.81KN/m^3

h=height=220m

Q=flow=690m^3/s

W=(690)(220)(9.81)=1489158Kw=1489.16MW

2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator

Wr=(0.9)(1489.16MW)=1340.2MW

the maximum possible electric power output is 1340.2MW

3 0
2 years ago
A baseball of mass m = 0.49 kg is dropped from a height h1 = 2.25 m. It bounces from the concrete below and returns to a final h
Brilliant_brown [7]

Answer:

Explanation:

Impulse = change in momentum

mv - mu , v and u are final and initial velocity during impact at surface

For downward motion of baseball

v² = u² + 2gh₁

= 2 x 9.8 x 2.25

v = 6.64 m / s

It becomes initial velocity during impact .

For body going upwards

v² = u² - 2gh₂

u² = 2 x 9.8 x 1.38

u = 5.2 m / s

This becomes final velocity after impact

change in momentum

m ( final velocity - initial velocity )

.49 ( 5.2 - 6.64 )

= .7056 N.s.

Impulse by floor in upward direction

= .7056 N.s

6 0
2 years ago
Point m is located a distance 2d from the midpoint between the two wires. find the magnitude of the magnetic field b1m created a
Tema [17]

Note: The diagram referred to in the question is attached here as a file.

Answer:

The magnitude of the magnetic field is B = \frac{0.071 \mu I}{d}

Explanation:

The magnetic field can be determined by the relationship:

B = \frac{\mu I}{2\pi R}...............(1)

Were I is the current flowing through the wires

The distance R from point 1 to m is calculated using the pythagora's theorem

R = \sqrt{d^{2} + (2d)^{2}  }

R = \sqrt{5d^{2} } \\R = d\sqrt{5}

Substituting R into equation (1)

B = \frac{\mu I}{2\pi d\sqrt{5} }

B = \frac{0.071 \mu I}{d}

3 0
2 years ago
Other questions:
  • A skateboarder with a mass of 45 kilograms is riding on a skateboard with a mass of 2.5 kilograms. What should be the velocity o
    5·2 answers
  • A microwave oven operates at 3.00 ghz . what is the wavelength of the radiation produced by this appliance?
    9·1 answer
  • Alex, who has a mass of 100kg, is skateboarding at 9.0m/s when he smacks into a brick wall and comes to a dead stop in 0.2 s. sh
    5·1 answer
  • Assume that the cart is free to roll without friction and that the coefficient of static friction between the block and the cart
    15·2 answers
  • You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
    7·1 answer
  • A world class runner can run long distances at a pace of 15 km/hour. That runner expends 800 kilocalories of energy per hour. a)
    15·1 answer
  • Wile E. Coyote wants to launch Roadrunner into the air using a long lever asshown below. The lever starts at rest before the Coy
    5·1 answer
  • The difference between the two molar specific heats of a gas is 8000J/kgK. If the ratio of the two specific heats is 1.65, calcu
    5·1 answer
  • After an arrow is shot, is the force unbalanced or balanced? BRAINLY.
    6·1 answer
  • A man holds a rectangular card in front of and parallel to a plane mirror. In order for him to see the entire image of the card,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!