Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:

n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:

hence, the frequency of the third overtone is 102 Hz
Answer:
Explanation:
The specific heat of gold is 129 J/kgC
It's melting point is 1336 K
It's Heat of fusion is 63000 J/kg
Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,
The first is E1 = 63000 J/kg x 1.5 = 94500 J
the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J
Therefore, all solid is not correct. You will have a mixture of solid and liquid.
For more detail, the difference between E1 and E2 is 7812 J, and that will melt
7812/63000 = 0.124 kg of the solid gold
<h3><u>Answer</u>;</h3>
= 22°
<h3><u>Explanation</u>;</h3>
- According to Snell's law, the ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant. The constant value is called the refractive index of the second medium with respect to the first.
- Therefore; Sin i/Sin r = η
In this case; Angle of incidence = 90° -60° =30°, angle of refraction =? and η = 1.33
Thus;
Sin 30 / Sin r = 1.33
Sin r = Sin 30°/1.33
= 0.3759
r = Sin^-1 0.3759
= 22.08
<u>≈ 22°</u>
I am pretty sure the answer would be too stretch
Explanation:
3
i believe that they are all going at 3.2 meters each, I did 4 times 0.8