Answer:
Smaller refractive power
Explanation:
The refractive power of an eye is the extent to which it can converge or diverge the light rays.
Near point is the the closest point for an eye such that when an object is placed at that point the image it forms is sharp and clearly visible to the eye.
A the person ages, the ciliary muscles of the eyes weakens and as a result the lens contracts and the formation of the image takes place behind the retina instead of forming at the retina.
Thus the near point also increases and the refractive power becomes smaller.
If Earth was twice as far from the sun, the force of gravity attracting the Earth to the sun would be only one-quarter as strong. The correct answer will be C.
The velocity of the aircraft relative to the ground is 240 km/h North
Explanation:
We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.
Mathematically:

where
v' is the velocity of the aircraft relative to the ground
v is the velocity of the aircraft relative to the air
is the velocity of the air relative to the ground.
Taking north as positive direction, we have:
v = +320 km/h
(since the air is moving from North)
Therefore, we find
(north)
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly
Answer:
The amplitude is 2.3 m
The Wavelength is 8.6 m
The frequency is 0.16 Hz
The time period is 6.25 sec
The equation that governs the behavior is ![Y=(2.3)sin[(\frac{2\pi}{8.6} )x -(\frac{2\pi}{6.2} )t]](https://tex.z-dn.net/?f=Y%3D%282.3%29sin%5B%28%5Cfrac%7B2%5Cpi%7D%7B8.6%7D%20%29x%20-%28%5Cfrac%7B2%5Cpi%7D%7B6.2%7D%20%29t%5D)
Explanation:
The explanation is shown on the first uploaded image
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.