Answer:
407 steps
Explanation:
From the question,
P = mgh/t........... Equation 1
Where P = power, m = mass, g = acceleration due to gravity, h = height, t = time.
Make h the subject of the equation
h = Pt/mg............. Equation 2
Given: P = 746 W, t = 1 minute = 60 seconds, m = 70 kg.
Constant: g = 9.8 m/s²
Substitute into equation 2
h = 746(60)/(70×9.8)
h = 44760/686
h = 65.25 m
h = 6525 cm
number of steps = 6525/16
number of steps = 407 steps
Answer:
Juan and Kuri complete one revolution in the same time, but Juan travels a shorter distance and has a lower speed.
Explanation:
Since Juan is closer to the center and Kuri is away from the center so we can say that Juan will move smaller distance in one complete revolution
As we know that the distance moved in one revolution is given as

also the time period of revolution for both will remain same as they move with the time period of carousel
Now we can say that the speed is given as

so Juan will have less tangential speed. so correct answer will be
Juan and Kuri complete one revolution in the same time, but Juan travels a shorter distance and has a lower speed.
They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.
Hope this helps :)
Answer:
A) 0.0 kJ
Explanation:
Change in the internal energy of the gas is a state function
which means it will not depends on the process but it will depends on the initial and final state
Also we know that internal energy is a function of temperature only
so here the process is given as isothermal process in which temperature will remain constant always
here we know that

now for isothermal process since temperature change is zero
so change in internal energy must be ZERO
Answer:
Explanation:
The temperature is at its Melting Point - <em>t</em><u><em>emperature at which a solid begins to liquefy. </em></u>
<u><em /></u>
<u><em>Got The Answer From Google</em></u>