Answer:
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
Explanation:
We must work on this problem using the rotational equilibrium equations and then they compared the tension values that the cable supports.
Let's start with fixing a reference system on the hinge of the flag, we take as positive the anti-clockwise turn
They indicate the weight of the pole W₁ = 120 lb and a length of L = 9 ft, the weight of the man W₂ = 150, we assume that the cable is at the tip of the pole
-
L + W₂ L + W₁ L / 2 = 0
T_{y} = W₂ + W₁ / 2
T_{y} = 120 + 150/2
T_{y} = 195 lb
we use trigonometry to find the cable tension
sin 30 = T_{y} / T
T = T_{y} / sin 30
T = 195 / sin 30
T = 390 lb
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
T < 500 lb
First off, you can cross out alternating current because a 9V battery doesn't give out AC, it gives out solely DC. If the battery is connected to each battery individually, then they are in parallel. So, according to Kirchhoff's Voltage Law, in parallel, V total = V1 = V2= V3..
So I'd say B) !
<span>If the maximum permissible limit for depression of the structure is 20 centimeters, the number of floors that can be safely added to the building is </span><span>C. 18</span>
depression = (depression/floor)(# floors) < 20
Here are the following choices:
<span>A.
14
B.
15
C.
18
D.
23</span>
First, before determining which variable is which, we go over the definition of each.
The independent variable is the one which is intentionally changed in order to investigate its effect on the dependent variable.
The dependent variable is monitored and changes occur in it due to the changing conditions of the independent variable.
In this case, the location of the African violets is the independent variable as it is intentionally changed, while the rate of growth of the African violets is the dependent variable as it is being measured.
Answer:
The volume at mountains is 2.766 L.
Explanation:
Given that,
Volume 
Pressure 
Pressure 
Temperature 
Temperature 
We need to calculate the volume at mountains
Using gas law

For both temperature,

Put the value into the formula



Hence, The volume at mountains is 2.766 L.