Complete question:
The classic Goodyear blimp is essentially a helium balloon— a big one, containing 5700 m³ of helium. If the envelope and gondola have a total mass of 4300 kg, what is the maximum cargo load when the blimp flies at a sea-level location? Assume an air temperature of 20°C.
Answer:
52.4 kN
Explanation:
The helium at 20°C has a density of 0.183 kg/m³, and the cargo load is the weight of the system, which consists of the envelope, the gondola, and the helium.
The helium mass is the volume multiplied by the density, thus:
mHe = 5700 * 0.183 = 1043.1 kg
The total mass is then 5343.1 kg. The weight is the mass multiplied by the gravity acceleration (9.8 m/s²), so:
W = 5343.1*9.8
W = 53362.38 N
W = 52.4 kN
Answer:u=97.41m/s
Explanation:
Given
inclination 
Horizontal distance travel by Particle 
Vertical height 
Let u be the initial velocity
calculating vertical distance

-------1
Calculating horizontal distance


put value of t in equation 1





at 


Answer: the pair of sunglasses
Explanation:
A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.
On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.
Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.
Answer:
Explanation:
Total mass of cable m = 190 x .402 = 76.38 lb
moment of inertial due to this cable = m r²
= 76.38 x (14/12)²
= 103.96 lb ft²
moment of inertia of empty spoon
= mR² where R is radius of gyration
= 65 x (11 / 12 )²
= 54.61 lb ft²
Total moment of inertia I = 158.57 lb ft²
Net force applied = force applied - frictional force
= 33 - 15 = 18 lb
= 18 x 32 poundal
= 576 poundal
Torque applied = force x radius
= 576 x 14/12
= 672 unit
Angular acceleration = torque / total moment of inertia
= 672 / 158.57
= 4.238 radian / s²
Answer:
0.480 seconds
Explanation:
The period is the time for 1 revolution. Writing a proportion:
14.4 s / 30.0 rev = t / 1 rev
t = 0.480 s
The period is 0.480 seconds.