Answer:
Explanation:
The described situation is is related to vertical motion (and free fall). So, we can use the following equation that models what happens with this rock:
(1)
Where:
is the rock's final height
is the rock's initial height
is the rock's initial velocity
is the angle at which the rock was thrown (directly upwards)
is the time
is the acceleration due gravity in Planet X
Then, isolating
and taking into account
:
(2)
(3)
Finally:
(4) This is the acceleration due gravity in Planet X
Answer:
to the right.
to in the upwards direction.
Explanation:
In order to solve this problem, we must first start by drawing a diagram of the situation. (See attached diagram).
So, remember that a force is determined by multiplying the mass of the parcticle by its acceleration:
F=ma
so in order to find the components of the force, we need to start by finding its acceleration.
Acceleration is found by using the following formula:

so we can subtract the two vectors, like this:

which yields:

or:

so now I can find the components of the force:

which yields:
F=(2.31i+2.1j)N
so the components of the force are:
to the right.
to in the upwards direction.
Answer:
Mass, m = 2.2 kg
Explanation:
It is given that,
Frequency of the piano, f = 440 Hz
Length of the piano, L = 38.9 cm = 0.389 m
Tension in the spring, T = 667 N
The frequency in the spring is given by :

is the linear mass density
On rearranging, we get the value of m as follows :


m = 0.0022 kg
or
m = 2.2 grams
So, the mass of the object is 2.2 grams. Hence, this is the required solution.
Answer: 
Explanation:

Where;
a = acceleration
V2 = final velocity
V1 = initial velocity
t = time
If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.



I am pretty sure the answer would be too stretch