answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reptile [31]
2 years ago
10

I need help ASAP

Physics
1 answer:
dolphi86 [110]2 years ago
7 0

Answer:

The horizontal applied force is 150.67 N.

Explanation:

We have,

Distance covered by the applied force on the couch is 0.75 m

Work done by the couch is 113 J

It is required to find the magnitude of the horizontal force applied. Due to the application of force work is done by an object. It can be given by :

W=Fd

F is horizontal force applied

F=\dfrac{W}{d}\\\\F=\dfrac{113}{0.75}\\\\F=150.67\ N

So, the horizontal applied force is 150.67 N.

You might be interested in
An astronaut holds a rock 100m above the surface of Planet X . The rock is then thrown upward with a speed of 15m/s , as shown i
Butoxors [25]

Answer:5 m/s^{2}

Explanation:

The described situation is is related to vertical motion (and free fall). So, we can use the following equation that models what happens with this rock:

y=y_{o}+V_{o}sin\theta t-\frac{1}{2}gt^{2} (1)

Where:

y=0m is the rock's final height

y_{o}=100 m is the rock's initial height

V_{o}=15 m/s is the rock's initial velocity

\theta=90\° is the angle at which the rock was thrown (directly upwards)

t=10 s is the time

g is the acceleration due gravity in Planet X

Then, isolating g and taking into account sin(90\°)=1:

g=(-\frac{2}{t^{2}})(y-y_{o}-V_{o}t) (2)

g=(-\frac{2}{(10 s)^{2}})(0 m-100 m-(15 m/s)(10 s)) (3)

Finally:

g=5 m/s^{2} (4) This is the acceleration due gravity in Planet X

7 0
2 years ago
A toy rocket engine is securely fastened to a large puck that can glide with negligible friction over a horizontal surface, take
adell [148]

Answer:

F_{x}=2.31N to the right.

F_{y}=2.1N to in the upwards direction.

Explanation:

In order to solve this problem, we must first start by drawing a diagram of the situation. (See attached diagram).

So, remember that a force is determined by multiplying the mass of the parcticle by its acceleration:

F=ma

so in order to find the components of the force, we need to start by finding its acceleration.

Acceleration is found by using the following formula:

a=\frac{V_{f}-V{0}}{t}

so we can subtract the two vectors, like this:

a=\frac{(6.00i+4.0j)m/s-1.60i m/s}{8s}

which yields:

a=\frac{(4.4i+4.0j)m/s}{8s}

or:

a=(0.55i + 0.5j) m/s^{2}

so now I can find the components of the force:

F=(4.2kg)(0.55i + 0.5j) m/s^{2}

which yields:

F=(2.31i+2.1j)N

so the components of the force are:

F_{x}=2.31N to the right.

F_{y}=2.1N to in the upwards direction.

6 0
2 years ago
The A-string (440 HzHz) on a piano is 38.9 cmcm long and is clamped tightly at both ends. If the string tension is 667N, what's
Mice21 [21]

Answer:

Mass, m = 2.2 kg                                

Explanation:

It is given that,

Frequency of the piano, f = 440 Hz

Length of the piano, L = 38.9 cm = 0.389 m

Tension in the spring, T = 667 N

The frequency in the spring is given by :

f=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}

\mu=\dfrac{m}{L} is the linear mass density

On rearranging, we get the value of m as follows :

m=\dfrac{T}{4Lf^2}

m=\dfrac{667}{4\times 0.389\times (440)^2}

m = 0.0022 kg

or

m = 2.2 grams

So, the mass of the object is 2.2 grams. Hence, this is the required solution.

3 0
2 years ago
Read 2 more answers
John runs 1.0 m/s at first, and then accelerates to 1.6 m/s during
erastova [34]

Answer: 0.13m/s^2

Explanation:

Formula: a=\frac{V_2-V_1}{t}

Where;

a = acceleration

V2 = final velocity

V1 = initial velocity

t = time

If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.

a=\frac{1.6m/s-1.0m/s}{4.5s}

a=\frac{0.6m/s}{4.5s}

a=0.13m/s^2

7 0
2 years ago
Read 2 more answers
Which of these is the most effective way for Leanna to cool down after an intense bike ride
Sonja [21]
I am pretty sure the answer would be too stretch
6 0
2 years ago
Other questions:
  • a pebble is dropped down a well and hits the water 1.5 seconds later. using the equations for motion with constant acceleration,
    7·2 answers
  • As the wavelength increases, the frequency (2 points) decreases and energy decreases. increases and energy increases. decreases
    8·2 answers
  • A baseball weighs 5.19 oz. what is the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher a
    8·2 answers
  • Which is a correct method used in a scientific experiment involving acid and base solutions
    9·1 answer
  • A roller of radius 12.5 cm turns at 14 revolutions per second. What is the linear velocity of the roller in meters per second?
    11·2 answers
  • As an audio CD plays, the frequency at which the disk spins changes.
    13·1 answer
  • Consider two adjacent states, S1 and S2, that wish to control particulate emissions from power plants and cement plants; New Jer
    14·1 answer
  • In 2016 there were 2025 reported collisions between trains and cars that’s resulted in 265 fatalities. Explain the change in kin
    10·1 answer
  • You are pulling your little sister on her sled across an icy (frictionless) surface. When you exert a constant horizontal force
    6·1 answer
  • Two pickup trucks each have a mass of 2,000 kg. The gravitational force between the trucks is 3.00 × 10-5 N. One pickup truck is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!