E = 0.25 = m*g*h
<span>h = 0.25/(m*g) = 0.25/(0.125*10) = 0.25/1.25 = 1/5 = 0.20 m
I hope this helps you have a great day and im sorry it took so long to get an answer</span>
Answer: Resistance = 
The approximate diameter of a penny is, <em>d</em> = 20 mm
thickness of penny is, <em>L = </em> 1.5×
mm
The area of penny along circular face is,
= 3.14×
m²
The resistivity of copper is <em>ρ</em> = 1.72 x 10-8 Ωm.
Resistance,

Let
upthrust = T
weight = W = mg
Air resistance = F
When balloon is descending, air resistance acts upwards (positive)
By Newton's first law, the net force on the balloon is zero, or
T+F-W=0......................(1)
Let w=weight of material dumped so that balloon now travels upwards at constant speed.
Air resistance acts against motion, namely downwards.
The Newton's equation now reads
T-F-(W-w)=0................(2)
Subtract (2) from (1)
T+F-W - (T-F-(W-w)) = 0
Solve for w
w=2F, or
the WEIGHT of material to be released equals twice the resistance of air.
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s
Answer:
Net electric field, 
Explanation:
Given that,
Charge 1, 
Charge 2, 
distance, d = 3.2 cm = 0.032 m
Electric field due to charge 1 is given by :



Electric field due to charge 2 is given by :



The point charges have opposite charge. So, the net electric field is given by the sum of electric field due to both charges as :



So, the electric field strength at the midpoint between the two charges is 91406.24 N/C. Hence, this is the required solution.