The answer is letter a. It is best to slow down in situations of heavy rain or flooded road as skid could be the result if you lose out of control because the driver isn't slowing down. That is why it is being said that tires can ride on a thin film of water skis as it could skid if it has lost control if the driver hadn't slowed down.
Given
m1(mass of red bumper): 225 Kg
m2 (mass of blue bumper): 180 Kg
m3(mass of green bumper):150 Kg
v1 (velocity of red bumper): 3.0 m/s
v2 (final velocity of the combined bumpers): ?
The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:
Pa= Pb
Where Pa is the momentum before collision and Pb is the momentum after collision.
Now applying this law for the above problem we get
Momentum before collision= momentum after collision.
Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s
Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2
=555v2
Now we know that Momentum before collision= momentum after collision.
Hence we get
1215 = 555 v2
v2 = 2.188 m/s
Hence the velocity of the combined bumper cars is 2.188 m/s
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
Answer:
a) 
b) 
c) Compressing is easier
Explanation:
Given:
Expression of force:

where:



when the spring is stretched
when the spring is compressed
hence,

a)
From the work energy equivalence the work done is equal to the spring potential energy:
here the spring is stretched so, 
Now,
The spring constant at this instant:



Now work done:



b)
When compressing the spring by 0.05 m
we have, 
<u>The spring constant at this instant:</u>



Now work done:



c)
Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.