answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
2 years ago
7

Nate throws a ball straight up to Kayla, who is standing on a balcony 3.8 m above Nate. When she catches it, the ball is still m

oving upward at a speed of 2.8 m/s. Required:With what initial speed did Nate throw the ball?
Physics
1 answer:
marin [14]2 years ago
8 0

Answer:

9.1m/s  

Explanation:

Nate throws a straight ball to Kayla who is standing at a balcony 3.8m above Nate

When she catches the ball, it is still moving upward with a speed of 2.8m/s

v = 2.8m/s

u = ?

s = 3.8m

a= -9.8(The acceleration has a negative sign because the speed of the ball is declining)    

Therefore the initial speed at which Nate threw the ball can be calculated as follows

v^2= u^2 + 2as

2.8^2= u^2 + 2(-9.8)(3.8)

7.84= u^2 + (-74.48)

7.84= u^2 - 74.48

u^2= 7.84 + 74.48

<h3 />

u^2= 82.32

u= √82.32

u = 9.1m/s    

Hence the initial speed at which Nate threw the ball is 9.1m/s

You might be interested in
A particle decelerates uniformly from a speed of 30 cm/s to rest in a time interval of 5.0 s. It then has a uniform acceleration
wel

Answer:

V=20cm/s

Explanation:

The average speed is the distance total divided the time total:

V=X/T

First stage:

T1=5s

v_{f}  =v_{o} - at

But, v_{f}  =0   (decelerates to rest)

then: a =v_{o} /t=0.3/5=0.06m/s^{2}

on the other hand:

x =v_{o}*t - 1/2*at^{2}=0.3*5-1/2*0.06*5^{2}=0.75m

X1=75cm

Second stage:

T2=5s

x =v_{o}*t + 1/2*at^{2}=0+1/2*0.1*5^{2}=1.25m

X2=125cm

Finally:

X=X1+X2=200cm

T=T1+T2=10s

V=X/T=20cm/s

8 0
2 years ago
The graph indicates Linda’s walk.
Sedaia [141]
I think the right answer is the first one. If she stops moving her Position does not change any more-and the Graph Shows that after 6 seconds she stays at the Position of 5 m. If she Went Back to the start point the Graph would have Developed Back to 0m(decreased).
3 0
2 years ago
Read 2 more answers
A girl is shown at position A on a swing when the seat is directly below the support bar. The seat is then at height A as shown
MrRa [10]

Answer:

<u></u>

  • <u>1. The potential energy of the swing is the greatest at the position B.</u>

  • <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>

Explanation:

Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.

The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>

Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,

7 0
2 years ago
Read 2 more answers
1)After catching the ball, Sarah throws it back to Julie. However, Sarah throws it too hard so it is over Julie's head when it r
DENIUS [597]

Answer:

1)

v_{oy}=11.29\ m/s

2)

y=7.39\ m

Explanation:

<u>Projectile Motion</u>

When an object is launched near the Earth's surface forming an angle \theta with the horizontal plane, it describes a well-known path called a parabola. The only force acting (neglecting the effects of the wind) is the gravity, which acts on the vertical axis.

The heigh of an object can be computed as

\displaystyle y=y_o+V_{oy}t-\frac{gt^2}{2}

Where y_o is the initial height above the ground level, v_{oy} is the vertical component of the initial velocity and t is the time

The y-component of the speed is

v_y=v_{oy}-gt

1) We'll find the vertical component of the initial speed since we have not enough data to compute the magnitude of v_o

The object will reach the maximum height when v_y=0. It allows us to compute the time to reach that point

v_{oy}-gt_m=0

Solving for t_m

\displaystyle t_m=\frac{v_{oy}}{g}

Thus, the maximum heigh is

\displaystyle y_m=y_o+\frac{v_{oy}^2}{2g}

We know this value is 8 meters

\displaystyle y_o+\frac{v_{oy}^2}{2g}=8

Solving for v_{oy}

\displaystyle v_{oy}=\sqrt{2g(8-y_o)}

Replacing the known values

\displaystyle v_{oy}=\sqrt{2(9.8)(8-1.5)}

\displaystyle v_{oy}=11.29\ m/s

2) We know at t=1.505 sec the ball is above Julie's head, we can compute

\displaystyle y=y_o+V_{oy}t-\frac{gt^2}{2}

\displaystyle y=1.5+(11.29)(1.505)-\frac{9.8(1.505)^2}{2}

\displaystyle y=1.5\ m+16,991\ m-11.098\ m

y=7.39\ m

5 0
2 years ago
When you urinate, you increase pressure in your bladder to produce the flow. For an elephant, gravity does the work. An elephant
weqwewe [10]

Answer:

a) v =  1.19 m / s , b)   P₁ = 0.922 10⁵ Pa

Explanation:

1) Let's use the fluid continuity equation

       Q = A v

The area of ​​a circle is

      A = π r2 = π d²/4

     

     v = Q / A = Q 4 / pi d²

     v = 0.006 4/π 0.08²

     v =  1.19 m / s

2) write Bernoulli's equation, where point 1 is the bladder and point 2 is the urine exit point

     P₁ + ½ rho v₁² + rho g y₁ = P₂ + ½ rho v₂² + rho g y₂

The exercise tell us

P₂ = 1.0013 105 Pa

v₁ = 0

y₁ = 1 m

y₂=0  

Rho (water) = 1000 kg / m³

      P₁ + rho y₁ = P₂ + ½ rho v₂²

      P₁ = P₂ + ½ rho v₂² - rho g y₁

      P₁ = 1.013 10⁵ + ½ 1000 (1.19)² - 1000 9.8 1

      P₁ = 1.013 10⁵ +708.5  - 9800

      P₁ =  92208.5Pa

      P₁ = 0.922 10⁵ Pa

8 0
2 years ago
Other questions:
  • Six dogs pull a two-person sled with a total mass of 280 kg. The coefficient of kinetic friction between the sled and the snow i
    7·2 answers
  • There have been several proposed atomic models during the last 150 years. Which model best illustrates the Bohr model. This mode
    10·2 answers
  • Han and Greedo fire their blasters at each other. The blasts are loud, and the intensity of the sound spreads through the cantin
    11·2 answers
  • A 5⁢kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant.
    11·1 answer
  • A solar heated house loses about 5.4 × 107 cal through its outer surfaces on a typical 24-h winter day.
    13·1 answer
  • What is the magnitude of the force needed to hold the outer 2 cm of the blade to the inner portion of the blade?
    14·1 answer
  • A metal, M, forms an oxide having the formula M2O3 containing 52.92% metal by mass. Determine the atomic weight in g/mole of the
    8·1 answer
  • Carry's car has a mass of 1000 kg and its brakes can apply 8000 N of force. If she is driving at 24 m/s and sees something in th
    5·1 answer
  • cicadas produce a sound that has a frequency of 123 Hz. what is the wavelength of this sound in the air? the speed of sound in a
    15·1 answer
  • Reset the PhET simulation (using the button in the lower right) and set it up in the following manner: select Oscillate, select
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!