answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
2 years ago
11

A 1150 kg car is on a 8.70° hill. using x-y axis tilted down the plane, what is the x-component of the weight?

Physics
1 answer:
Fed [463]2 years ago
6 0
I assume the x-y axis are tilted such that the x-axis is parallel to the surface of the hill while the y-axis is perpendicular to it.

In this case, the x-component of the weight is given by:
W_x =mg \sin \theta
where
m is the mass of the car
g is the acceleration of gravity
\theta is the angle of the hill

Substituting numbers into the formula, we find
W_x=(1150 kg)(9.81 m/s^2)(\sin 8.70^{\circ})=1706 N
You might be interested in
Conductance is directly proportional to the length of a conductor. true false user: resistance is inversely proportional to the
zlopas [31]
1) false

2) area of the conductor
7 0
2 years ago
Read 2 more answers
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6
Shalnov [3]

Answer:

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

Explanation:

A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.

A) What is the wavefunction y(x,t) for the standing wave that is produced?

B) In which harmonic is the standing wave oscillating?

C) What is the frequency of the fundamental oscillation?

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. lambda=2L/n

when comparing the wave equation with the general wave equation , we get the wavelength to be

2*pi*x/lambda=6.98x

lambda=0.9m

we use the equation

lambda=2L/n

n=number of harmonics

L=length of string

0.9=2(1.35)/n

n=2.7/0.9

n=3

third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

8 0
2 years ago
To crossing over the flooded canal.
zubka84 [21]

Answer:

F. jumping

Explanation:

you can't throw/toss yourself, you cant roll over water, catching?, you cant run over water, jumps are bigger than hops

4 0
2 years ago
Case 1: A DJ starts up her phonograph player. The turntable accelerates uniformly from rest, and takes t₁ = 11.9 seconds to get
olga_2 [115]

Answer:

Part a)

\omega = 8.17 rad/s

Part b)

N = 7.74 rev

Part c)

\alpha = 0.69 rad/s^2

Part d)

\alpha = 0.48 rad/s^2

Part e)

t = 9.14 s

Explanation:

Part a)

Angular speed is given as

\omega = 2\pi f

\omega = 2\pi(\frac{78}{60})

\omega = 8.17 rad/s

Part b)

Since turn table is accelerating uniformly

so we will have

\theta = \frac{\omega_f + \omega_i}{2} t

\theta = \frac{8.17 + 0}{2}(11.9)

2N\pi = 48.6

N = 7.74 rev

Part c)

angular acceleration is given as

\alpha = \frac{\omega_f - \omega_i}{t}

\alpha = \frac{8.17 - 0}{11.9}

\alpha = 0.69 rad/s^2

Part d)

When its angular speed changes to 120 rpm

then we will have

\omega_2 = 2\pi (\frac{120}{60})

\omega_2 = 12.56 rad/s

number of turns revolved is 15 times

so we have

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

12.56^2 - 8.17^2 = 2\alpha (2\pi\times 15)

\alpha = 0.48 rad/s^2

Part e)

now for uniform acceleration we have

\omega_f - \omega_i = \alpha t

12.56 - 8.17 = 0.48 t

t = 9.14 s

7 0
2 years ago
A 20.0 kg curling stone travels 30.0 m along the ice surface. If the frictional force is 10.0 N, the thermal energy produced is
evablogger [386]
The thermal energy is where the work of friction comes from.  That is what stops it eventually.  In this case a counter force of 10N is applied over the distance of 30.0m.  The energy is given by Force*Distance.  Here this is 300J.  This friction work is the thermal energy.
4 0
2 years ago
Read 2 more answers
Other questions:
  • After watching a video about submarines, Jamil wants to learn more about the ocean. which question could be answered through sci
    9·1 answer
  • What is the minimum frequency of light necessary to emit electrons from titanium via the photoelectric effect?
    6·2 answers
  • A plant blossoms with violet-colored flowers. The flowers appear violet because they absorb all light rays except for____ rays.
    9·2 answers
  • Write the meaning of an object has 2 meter length
    15·1 answer
  • A beam of unpolarized light shines on a stack of five ideal polarizers, set up so that the angles between the polarization axes
    12·1 answer
  • Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hourmiles/hour
    8·1 answer
  • Shows the position-versus-time graph of a particle in SHM. Positive direction is the direction to the right.
    6·1 answer
  • Einstein and Lorentz, being avid tennis players, play a fast-paced game on a court where they stand 20.0 m from each other. Bein
    15·1 answer
  • Grace, Erin, and Tony are on a seesaw. Grace has a mass of 45kg and is seated 0.7m to the left of the fulcrum. Nicole has a mass
    13·1 answer
  • POINTS + BRAINLIEST TO CORRECT ANSWER
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!