Answer:
a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).
b. third harmonic
c. to calculate frequency , we compare with general wave equation
y(x,t)=Acos(kx+ωt)
from ωt=742t
ω=742
ω=2*pi*f
742/2*pi
f=118.09Hz
Explanation:
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.
A) What is the wavefunction y(x,t) for the standing wave that is produced?
B) In which harmonic is the standing wave oscillating?
C) What is the frequency of the fundamental oscillation?
a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).
b. lambda=2L/n
when comparing the wave equation with the general wave equation , we get the wavelength to be
2*pi*x/lambda=6.98x
lambda=0.9m
we use the equation
lambda=2L/n
n=number of harmonics
L=length of string
0.9=2(1.35)/n
n=2.7/0.9
n=3
third harmonic
c. to calculate frequency , we compare with general wave equation
y(x,t)=Acos(kx+ωt)
from ωt=742t
ω=742
ω=2*pi*f
742/2*pi
f=118.09Hz
Answer:
F. jumping
Explanation:
you can't throw/toss yourself, you cant roll over water, catching?, you cant run over water, jumps are bigger than hops
Answer:
Part a)

Part b)

Part c)

Part d)

Part e)

Explanation:
Part a)
Angular speed is given as



Part b)
Since turn table is accelerating uniformly
so we will have




Part c)
angular acceleration is given as



Part d)
When its angular speed changes to 120 rpm
then we will have


number of turns revolved is 15 times
so we have



Part e)
now for uniform acceleration we have



The thermal energy is where the work of friction comes from. That is what stops it eventually. In this case a counter force of 10N is applied over the distance of 30.0m. The energy is given by Force*Distance. Here this is 300J. This friction work is the thermal energy.