answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shutvik [7]
2 years ago
8

The force shown in the attached figure is the net eastward force acting on a ball. The force starts rising at t = 0.012 s, falls

back to zero at t = 0.062 s, and reaches a maximum force of 35 N at the peak. Determine with an error no bigger than 25% (high or low) the magnitude of the impulse (in N-s) delivered to the ball. Hint: Do not use J = FΔt. Look at the figure. Find the area of a nearly equally sized triangle.

Physics
1 answer:
kifflom [539]2 years ago
6 0
Impulse = Integral of F(t) dt from 0.012s to 0.062 s

Given that you do not know the function F(t) you have to make an approximation.

The integral is the area under the curve.

The problem suggest you to approximate the area to a triangle.

In this triangle the base is the time: 0.062 s - 0.012 s = 0.050 s

The height is the peak force: 35 N.

Then, the area is [1/2] (0.05s) (35N) = 0.875 N*s

Answer> 0.875 N*s
You might be interested in
Complete the statements using data from Table A of your Student Guide. The speed of the cart after 8 seconds of Low fan speed is
finlep [7]

Answer:

The speed of the cart after 8 seconds of Low fan speed is  72.0 cm/s

The speed of the cart after 3 seconds of Medium fan speed is   36.0 cm/s

The speed of the cart after 6 seconds of High fan speed is  96.0 cm/s

Explanation:

took the test on edgenuity

4 0
1 year ago
Read 2 more answers
A jetboat is drifting with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m ​ 5, point, 0, start fraction, start text, m, end tex
love history [14]

The question is incomplete. Here is the entire question.

A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?

Answer: Δx = - 42m

Explanation: The jetboat is moving with an acceleration during the time interval, so it is a <u>linear</u> <u>motion</u> <u>with</u> <u>constant</u> <u>acceleration</u>.

For this "type" of motion, displacement (Δx) can be determined by:

\Delta x = v_{i}.t + \frac{a}{2}.t^{2}

v_{i} is the initial velocity

a is acceleration and can be positive or negative, according to the referential.

For Referential, let's assume rightward is positive.

Calculating displacement:

\Delta x = 5(6) - \frac{4}{2}.6^{2}

\Delta x = 30 - 2.36

\Delta x = - 42

Displacement of the boat for t=6.0s interval is \Delta x = - 42m, i.e., 42 m to the left.

8 0
2 years ago
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Alborosie

Answer:

I = 4.75 A

Explanation:

To find the current in the wire you use the following relation:

J=\frac{E}{\rho}      (1)

E: electric field E(t)=0.0004t2−0.0001t+0.0004

ρ: resistivity of the material = 2.75×10−8 ohm-meters

J: current density

The current density is also given by:

J=\frac{I}{A}        (2)

I: current

A: cross area of the wire = π(d/2)^2

d: diameter of the wire = 0.205 cm = 0.00205 m

You replace the equation (2) into the equation (1), and you solve for the current I:

\frac{I}{A}=\frac{E(t)}{\rho}\\\\I(t)=\frac{AE(t)}{\rho}

Next, you replace for all variables:

I(t)=\frac{\pi (d/2)^2E(t)}{\rho}\\\\I(t)=\frac{\pi(0.00205m/2)^2(0.0004t^2-0.0001t+0.0004)}{2.75*10^{-8}\Omega.m}\\\\I(t)=4.75A

hence, the current in the wire is 4.75A

4 0
1 year ago
What force would be needed to accelerate a 0.040-kg golf ball at 20.0 m/s?
Naily [24]

Answer:

any amount of force will do it as time is not mentioned here

5 0
2 years ago
Temperature difference in the body. The surface temperature of the body is normally about 7.00 ∘C lower than the internal temper
egoroff_w [7]

Answer:

7 K.

12. 6 °F

Explanation:

Convert the individual temperatures to Kelvin (Surface temperature and internal temperature) before calculating the temperature difference of the body,

Let The Surface temperature Be = X °C

And the internal Temperature will be = (X + 7) °C

Converting the surface and the internal temperature to temperature in Kelvin

Surface Temperature of the body (K) = (X + 273) K

Internal Temperature of the body (K) = (X + 7) + 273 = (X + 280) K.

∴ Temperature difference of the body (K) = Internal temperature(K) - surface temperature(K) = (X + 279) - (X + 280)

   = X - X + 280 - 273 = 7 K.

∴Temperature difference of the body (K) = 7 K

Also for Fahrenheit, Convert the individual temperatures (Surface temperature and internal temperature) to Fahrenheit before calculating the temperature difference of the body.

We use , F = 1.8C + 32

Where C = temperature in Celsius.

also,

Let The Surface temperature Be = X °C

And the internal Temperature of the body will be = (X + 7) °C

Converting to Fahrenheit

Surface Temperature of the body = 1.8X + 32 °F

Internal Temperature of the body = 1.8(X+7) + 32 = 1.8X + 12.6 + 32

Internal Temperature of the body = 1.8X + 44.6 °F

∴ The temperature difference of the body (°F) = Internal temperature(°F) - surface temperature(°F) = (1.8X + 44.6) - (1.8X + 32)

      surface temperature(°F) = 1.8X - 1.8X  + 44.6 - 32

       surface temperature(°F) = 12. 6 °F.

   

3 0
2 years ago
Other questions:
  • A CCD has a greatest possible pixel value of 4095. what is the bit level of this CCD?
    5·1 answer
  • Applied sciences refers to the study of scientific principles.<br> True<br> False
    12·2 answers
  • You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m&gt;s relative to an orbiting space shuttle
    10·1 answer
  • Tyson throws a shot put ball weighing 7.26 kg. At a height of 2.1 m above the ground, the mechanical energy of the ball is 172.1
    15·2 answers
  • The robot arm is elevating and extending simultaneously. At a given instant, θ = 30°, ˙ θ = 10 deg / s = constant θ˙=10 deg/s=co
    6·1 answer
  • platform diving in the olympic games takes place at two heights: 5 meters and 10 meters. What is the velocity of a diver enterin
    5·1 answer
  • A basketball player standing up with the hoop launches the ball straight up with an initial velocity of v_o = 3.75 m/s from 2.5
    5·1 answer
  • The ionization energy of singly charged anions _____ as electron affinity of the neutral atom _____
    15·1 answer
  • If the light strikes the first mirror at an angle θ1, what is the reflected angle θ2? express your answer in terms of θ1.
    14·1 answer
  • Observe: Up until now, all the problems you have solved have involved converting only one unit. However, some conversion problem
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!