answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ValentinkaMS [17]
2 years ago
12

would an elephant standing on one leg exert a higher force on a scale than an elephant on four legs. why​

Physics
1 answer:
zlopas [31]2 years ago
7 0

Answer:

no becaus force is mass multiplied by acceleration. the mass of the elephant does not change

You might be interested in
An airplane flying parallel to the ground undergoes two consecutive dis- placements. The first is 75 km 30.0° west of north, and
torisob [31]

Answer: displacement of airplane is 172 km in direction 34.2 degrees East of North

Explanation:

In constructing the two displacements it is noticed that the angle between the 75 km vector and the 155 km vector is a right angle (90 degrees).

 

Hence if the plane starts out at A, it travels to B, 75 km away, then turns 90 degrees to the right (clockwise) and travels to C, 155 km away from B. Angle ABC is 90 degrees, hence we can use Pythagoras theorem to solve for AC

 

AC2 = AB2 + BC2 ; AC^2 = 752 + 1552  ; from this we get AC = 172 km (3 significant figures)

 

Angle BAC = Tan-1(155/75) ; giving angle BAC = 64.2 degrees

 

Hence AC is in a direction (64.2 - 30) = 34.2 degrees East of North

 

Therefore the displacement of the airplane is 172 km in a direction 34.2 degrees East of North

5 0
1 year ago
A solid ball is released from rest and slides down a hillside that slopes downward at 65.0" from the horizontal
PilotLPTM [1.2K]
Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline 
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
3 0
1 year ago
A hummingbird 3.4m above the ground flies 1.2 m along a straight line path. Upon spotting a flower below, the hummingbird drops
Anit [1.1K]

A = horizontal displacement of the humming bird = 1.2 m

B = vertical displacement of the humming bird = 1.4 m

C = net displacement of the humming bird from initial to final position = ?

In the triangle drawn , Using Pythagorean theorem

C = √(A² + B²)

inserting the values

C = √(1.2² + 1.4²)

C = √(1.44 + 1.96)

C = √(3.4)

C = 1.4 m

Hence the net displacement of hummingbird comes out to be 1.4 m

4 0
1 year ago
Read 2 more answers
The equation for the change in the position of a train (measured in units of length) is given by the following expression: x = ½
mel-nik [20]

Answer:

(B) (length)/(time³)

Explanation

The equation x = ½ at² + bt³ has to be dimensionally correct. In other words the term bt³ and ½ at² must have units of change of position = length.

We solve in order to find the dimension of b:

[x]=[b]*[t]³

length=[b]*time³

[b]=length/time³

6 0
2 years ago
Read 2 more answers
In this lab, you will use a dynamics track to generate collisions between two carts. If momentum is conserved, what variable cha
BartSMP [9]

In collision type of problems since momentum is always conserved

we can say

m_1v_{1i} + m_2v_{2i} = m_1 v_{1f} + m_2v_{2f}

So here along with this equation we also required one more equation for the restitution coefficient

v_{2f} - v_{1f} = e(v_{1i} - v_{2i})

so above two equations are required to find the velocity after collision

here the change in velocity occurs due to the contact force while they contact in each other

so this is the impulse of collision while they are in contact with each other while in collision which changes the velocity of two colliding objects

8 0
2 years ago
Read 2 more answers
Other questions:
  • The inventor of the photographic process in which a photograph produced without a negative by exposing objects to light on light
    9·2 answers
  • Roseanne heated a solution in a beaker as part of a laboratory experiment on energy transfer. After a while, she noticed the liq
    5·1 answer
  • An object is thrown horizontally off a cliff with an initial velocity of 5.0 meters per second. the object strikes the ground 3
    9·2 answers
  • How did the team determine that the body was placed in a wood chipper?
    10·2 answers
  • A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
    9·2 answers
  • A Micro –Hydro turbine generator is accelerating uniformly from an angular velocity of 610 rpm to its operating angular velocity
    10·1 answer
  • A uniform meter stick balances on a fulcrum placed at the 40 cm mark when a weight W is placed at the 30 cm mark. What is the we
    13·2 answers
  • A 25-coil spring with a spring constant of 350 N/m is cut into five equal springs with five coils each. What is the spring const
    13·1 answer
  • If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
    14·1 answer
  • the initial kinetic energy of an object moving on a horizontal surface is K. Friction between the object and the surface causes
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!