answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
1 year ago
6

the initial kinetic energy of an object moving on a horizontal surface is K. Friction between the object and the surface causes

the velocity of the object to decrease uniformly to zero in time t. What is the kinetic energy of the object at time = t/2?​
Physics
2 answers:
Ugo [173]1 year ago
8 0

Answer:

........................

baherus [9]1 year ago
4 0

Answer:

Kinetic energy is the energy an object has because of its motion.

If we want to accelerate an object, then we must apply a force. Applying a force requires us to do work. After work has been done, energy has been transferred to the object, and the object will be moving with a new constant speed. The energy transferred is known as kinetic energy, and it depends on the mass and speed achieved.

Kinetic energy can be transferred between objects and transformed into other kinds of energy. For example, a flying squirrel might collide with a stationary chipmunk. Following the collision, some of the initial kinetic energy of the squirrel might have been transferred into the chipmunk or transformed to some other form of energy.

How can we calculate kinetic energy?

To calculate kinetic energy, we follow the reasoning outlined above and begin by finding the work done, WWW, by a force, FFF, in a simple example. Consider a box of mass mmm being pushed through a distance ddd along a surface by a force parallel to that surface. As we learned earlier

\begin{aligned} W &= F \cdot d \\ &= m · a · d\end{aligned}

W

=F⋅d

=m⋅a⋅d

Huh? I'm lost already.

If we recall our kinematic equations of motion, we know that we can substitute the acceleration if we know the initial and final velocity—v_\mathrm{i}v

i

v, start subscript, i, end subscript and v_\mathrm{f}v

f

v, start subscript, f, end subscript—as well as the distance. What kinematic formula is this?

\begin{aligned} W &= m\cdot d\cdot \frac{v_\mathrm{f}^2-v_\mathrm{i}^2}{2d} \\ &= m\cdot \frac{v_\mathrm{f}^2-v_\mathrm{i}^2}{2} \\ &= \frac{1}{2}\cdot m \cdot v_\mathrm{f}^2 - \frac{1}{2}\cdot m \cdot v_\mathrm{i}^2 \end{aligned}

W

=m⋅d⋅

2d

v

f

2

−v

i

2

=m⋅

2

v

f

2

−v

i

2

=

2

1

⋅m⋅v

f

2

−

2

1

⋅m⋅v

i

2

So, when a net amount of work is done on an object, the quantity \dfrac{1}{2}mv^2

2

1

mv

2

start fraction, 1, divided by, 2, end fraction, m, v, squared—which we call kinetic energy KKK—changes.

\text{Kinetic Energy: } K=\frac{1}{2}\cdot m\cdot v^2Kinetic Energy: K=

2

1

⋅m⋅v

2

start text, K, i, n, e, t, i, c, space, E, n, e, r, g, y, colon, space, end text, K, equals, start fraction, 1, divided by, 2, end fraction, dot, m, dot, v, squared

Alternatively, one can say that the change in kinetic energy is equal to the net work done on an object or system.

W_{net}=\Delta KW

net

=ΔKW, start subscript, n, e, t, end subscript, equals, delta, K

This result is known as the work-energy theorem and applies quite generally, even with forces that vary in direction and magnitude. It is important in the study of conservation of energy and conservative forces.

You might be interested in
Takumi works in his yard for 45 minutes each Saturday. He works in the morning, and he wears sunscreen and a hat each time he wo
MrRa [10]

Explanation :

Takumi wears sunscreen and a hat each time he works in the yard. This is to protect himself with the strong radiation coming from the sun. UV rays that are coming from the sun are the main cause of skin cancer.

Stochastic effects are the effects that are caused by chance. Cancer is one of the main stochastic effects.

So, the correct option is (b) "the severity of stochastic effects, such as cancer".

7 0
3 years ago
Read 2 more answers
A fly has a mass of 1 gram at rest. how fast would it have to be traveling to have the mass of a large suv, which is about 3000
Zigmanuir [339]

We solve this using special relativity. Special relativity actually places the relativistic mass to be the rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt (1 - (v/c)^2). <span>

We want a ratio of 3000000 to 1, or 3 million to 1. 

</span>

<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2) 
1 - (v/c)^2 = (0.000000333)^2 
0.99999999999999 = (v/c)^2 
0.99999999999999 = v/c 
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>

8 0
2 years ago
Determine the specific volume of refrigerant-134a at 1 MPa and 50°C, using (a) the ideal-gas equation of state and (b) the gener
Andrej [43]

Answer:

( a ) The specific volume by ideal gas equation = 0.02632 \frac{m^{3} }{kg}

% Error =  20.75 %

(b) The value of specific volume From the generalized compressibility chart = 0.0142 \frac{m^{3} }{kg}

% Error =  - 34.85 %

Explanation:

Pressure = 1 M pa

Temperature = 50 °c = 323 K

Gas constant ( R ) for refrigerant = 81.49 \frac{J}{kg k}

(a). From ideal gas equation P V = m R T ---------- (1)

⇒ \frac{V}{m} = \frac{R T}{P}

⇒ Here \frac{V}{m} = Specific volume = v

⇒ v =  \frac{R T}{P}

Put all the values in the above formula we get

⇒ v = \frac{323}{10^{6} } ×81.49

⇒ v = 0.02632 \frac{m^{3} }{kg}

This is the specific volume by ideal gas equation.

Actual value = 0.021796 \frac{m^{3} }{kg}

Error =  0.02632 - 0.021796 =   0.004524 \frac{m^{3} }{kg}

% Error =  \frac{0.004524}{0.021796} × 100

% Error =  20.75 %

(b). From the generalized compressibility chart the value of specific volume

 \frac{V}{m} = v = 0.0142 \frac{m^{3} }{kg}

The actual value = 0.021796 \frac{m^{3} }{kg}

Error = 0.0142 - 0.021796 =  \frac{m^{3} }{kg}

% Error = \frac{- 0.0076}{0.021796} × 100

% Error =  - 34.85 %

3 0
2 years ago
For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
ikadub [295]

Answer:

no idea

Explanation:

7 0
2 years ago
Which of the following forms of radiation can penetrate up to a 2-cm layer of skin tissue?
Dmitry_Shevchenko [17]

Answer:

d). X-rays

Explanation:

X -rays are also called photons. They are a packet of electro magnetic radiation. X rays originate from the shell of the electron.  X rays are highly penetrating, and have a shorter wavelength than alpha particles and the beta particles. They are similar to the gamma rays which are also has a high penetrating power and easily pass through the human body.

 Thus X rays can penetrate a skin tissue upto 2 cm thickness.

4 0
2 years ago
Read 2 more answers
Other questions:
  • To avoid an accident, a driver steps on the brakes to stop a 1000-kg car traveling at 65km/h. if the braking distance is 35 m, h
    7·1 answer
  • For the meter stick shown in figure 10-4, the force F1 10.0 N acts at 10.0 cm. What is the magnitude of torque due to F1 about a
    13·1 answer
  • A hiker walks 200m west and then walks 100m north. What is the magnitude and direction of her resulting displacement?
    7·2 answers
  • A pulley system used to lift car tires has a mechanical advantage of 11.2. If you pull on the pulley with a force of 150 N, how
    12·2 answers
  • In the example pictured, the soda bottle would act as the?
    6·2 answers
  • A helicopter is traveling at 86.0 km/h at an angle of 35° to the ground. What is the value of Ax? Round your answer to the neare
    9·2 answers
  • A split highway has a number of lanes for traffic. For traffic going in one direction, the radius for the inside of the curve is
    5·1 answer
  • Where would the weight of an explorer be greater?The summit of Chimborazo, in Ecuador, which is at a distance of about 6,384 km6
    7·1 answer
  • What affects the way a projectile performs when it is shot from a firearm?
    10·2 answers
  • Peter left Town A at 13:30 and travelled towards Town B at an
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!