answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga_2 [115]
2 years ago
10

Two fun-loving otters are sliding toward each other on a muddy (and hence frictionless) horizontal surface. One of them, of mass

8.50 kg, is sliding to the left at 6.00 m/s, while the other, of mass 5.75 kg, is slipping to the right at 5.50 m/s. They hold fast to each other after they collide.
(a) Find the magnitude and direction of the velocity of these free-spirited otters right after they collide.
(b) How much mechanical energy dissipates during this play?
Physics
2 answers:
zvonat [6]2 years ago
8 0

Answer:

(a). The magnitude and direction of the velocity of the otters after collision is 1.35 m/s toward left.

(b). The mechanical energy dissipates during this play is 226.98 J.

Explanation:

Given that,

Mass of one otter = 8.50 kg

Speed = 6.00 m/s

Mass of other = 5.75 kg

Speed = 5.50 m/s

(a). We need to calculate the magnitude and direction of the velocity of these free-spirited otters right after they collide

Using conservation of momentum

m_{1}v_{1}+m_{2}v_{2}=(m_{1}+m_{2})v

Put the value into the formula

8.50\times(-6.00)+5.75\times5.50=(8.50+5.75)\times v

v=\dfrac{-19.375}{14.25}

v=-1.35\ m/s

Negative sign shows the direction of motion of the object after collision is toward left.

(b). We need to calculate the initial kinetic energy

Using formula of kinetic energy

K.E_{i}=\dfrac{1}{2}m_{1}v_{1}^2+\dfrac{1}{2}m_{2}v_{2}^2

Put the value into the formula

K.E_{i}=\dfrac{1}{2}\times8.50\times(6.00)^2+\dfrac{1}{2}\times5.75\times(5.50)^2

K.E_{i}=239.96\ J

We need to calculate the final kinetic energy

Using formula of kinetic energy

K.E_{f}=\dfrac{1}{2}(m_{1}+m_{2})v^2

Put the value into the formula

K.E_{f}=\dfrac{1}{2}\times(8.50+5.75)\times(-1.35)^2

K.E_{f}=12.98\ J

We need to calculate the mechanical energy dissipates during this play

Using formula of loss of mechanical energy

\Delta K.E=K.E_{f}-K.E_{i}

Put the value into the formula

\Delta K.E=12.98-239.96

\Delta K.E=-226.98\ J

Negative sign shows the loss of mechanical energy

Hence, (a). The magnitude and direction of the velocity of the otters after collision is 1.35 m/s toward left.

(b). The mechanical energy dissipates during this play is 226.98 J.

NikAS [45]2 years ago
3 0

Answer:

Explanation:

m1 = 8.5 kg

m2 = 5.75 kg

u1 = - 6 m/s

u2 = 5.5 m/s

(a) Let the velocity after collision is v.

Use the conservation of momentum

m1 x u1 + m2 x u2 = (m1 + m2) x v

- 8.5 x 6 + 5.75 x 5.5 = (8.5 + 5.75) x v

- 51 + 31.625 = 14.25 v

v = - 1.36 m/s

So, it moves towards left after collision.

(b) Kinetic energy before collision,

Ki = 0.5 x 8.5 x 6 x 6 + 0.5 x 5.75 x 5.5 x 5.5 = 240 J

Kinetic energy after collision

Kf = 0.5 x (8.5 + 5.75) x 1.36 x 1.36 = 13.18 J

Change in energy = 240 - 13.18 = 226.82 J

You might be interested in
A bee wants to fly to a flower located due North of the hive on a windy day. The wind blows from East to West at speed 6.68 m/s.
Aleonysh [2.5K]

Answer:  53.31\° East of North

Explanation:

We have the following data:

Speed of the wind from East to West: 6.68 m/s

Speed of the bee relative to the air:  8.33 m/s

If we graph these speeds (which in fact are velocities because are vectors) in a vector diagram, we will have a right triangle in which the airspeed of the bee (its speed relative to te air) is the hypotense and the two sides of the triangle will be the <u>Speed of the wind from East to West</u> (in the horintal part) and the <u>speed due North relative to the ground</u> (in the vertical part).

Now, we need to find the direction the bee should fly directly to the flower (due North):

sin \theta=\frac{Windspeed-from-East-to-West}{Speed-bee-relative-to-air}

sin \theta=\frac{6.68 m/s}{8.33 m/s}

Clearing \theta:

\theta=sin^{-1} (\frac{6.68 m/s}{8.33 m/s})

\theta=53.31\°

6 0
2 years ago
Among the largest passenger ships currently in use, the Norway has been in service the longest. The Norway is more than 300 m lo
LenaWriter [7]

Answer:

6.33\times 10^8\ kg\cdot m/s

Explanation:

Mass of the ship (m) = 6.9 × 10⁷ kg

Speed of the ship (v) = 33 km/h

First, let us convert the speed from km/h to m/s using the conversion factor.

We know that, 1 km/h = 5/18 m/s

So, 33 km/h = 33\times \frac{5}{18}=9.17\ m/s

Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.

So, here, length of the ship doesn't play any role in the determination of the momentum.

Magnitude of momentum of the ship = Mass × Speed

                                                             = (6.9\times 10^7\ kg)(9.17\ m/s)

                                                             = 6.33\times 10^8\ kg\cdot m/s

Therefore, the magnitude of ship's momentum is 6.33\times 10^8\ kg\cdot m/s.

6 0
2 years ago
A source of emf is connected by wires to a resistor and electrons flow in the circuit the wire diameter is teh same throughout t
vladimir2022 [97]
I think is E
I hope that helps
3 0
2 years ago
For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
ikadub [295]

Answer:

no idea

Explanation:

7 0
2 years ago
A hollow cylinder of mass 2.00 kgkg, inner radius 0.100 mm, and outer radius 0.200 mm is free to rotate without friction around
kipiarov [429]

Answer: 2.86 m

Explanation:

To solve this question, we will use the law of conservation of kinetic and potential energy, which is given by the equation,

ΔPE(i) + ΔKE(i) = ΔPE(f) + ΔKE(f)

In this question, it is safe to say there is no kinetic energy in the initial state, and neither is there potential energy in the end, so we have

mgh + 0 = 0 + KE(f)

To calculate the final kinetic energy, we must consider the energy contributed by the Inertia, so that we then have

mgh = 1/2mv² + 1/2Iw²

To get the inertia of the bodies, we use the formula

I = [m(R1² + R2²) / 2]

I = [2(0.2² + 0.1²) / 2]

I = 0.04 + 0.01

I = 0.05 kgm²

Also, the angular velocity is given by

w = v / R2

w = 4 / (1/5)

w = 20 rad/s

If we then substitute these values in the equation we have,

0.5 * 9.8 * h = (1/2 * 0.5 * 4²) + (1/2 * 0.05 * 20²)

4.9h = 4 + 10

4.9h = 14

h = 14 / 4.9

h = 2.86 m

8 0
2 years ago
Read 2 more answers
Other questions:
  • In an experiment the chemical reaction between a piece of aluminum foil and Copper(II)Chloride solution in a beaker is observed.
    12·2 answers
  • Mari places a marble at the top of a ramp and lets it go. It rolls down. At the bottom of the ramp, the marble bumps into a bloc
    7·2 answers
  • Jin walked 4 km on a straight path to get to the sandwich shop. He traveled 30° south of east.
    10·2 answers
  • You wad up a piece of paper and throw it into the wastebasket. How far will
    13·2 answers
  • A binary star system consists of two stars of masses m1 and m2. The stars, which gravitationally attract each other, revolve aro
    12·1 answer
  • Charge of uniform density (40 pC/m^2) is distributed on a spherical surface (radius = 1.0 cm), and a second concentric spherical
    14·1 answer
  • (1 point) Which of the following statements are true?A.The equation Ax=b is referred to as a vector equation.B.If the augmented
    10·1 answer
  • Einstein and Lorentz, being avid tennis players, play a fast-paced game on a court where they stand 20.0 m from each other. Bein
    15·1 answer
  • A light bulb in a battery powered desk lamp has a current of 0.042 A and is connected to a 9.2 V battery. What is the resistance
    9·2 answers
  • A construction worker accidentally drops a brick from a high scaffold. a. What is the brick's velocity after 4.0 s? b. How far d
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!