Answer:
ma= ma
m⋅a = m⋅a
And equivalently:
am=ma
a⋅m = m⋅a
Explanation:
Question
Assuming this question "Similar to what you see in your textbook, you can generally omit the multiplication symbol as you answer questions online, except when the symbol is needed to make your meaning clear. For example, 1*10^5 is not the same as 110^5 . When you need to be explicit, type * (Shift + 8) to insert the multiplication operator. You will see a multiplication dot (⋅) appear in the answer box. Do not use the symbol x. For example, for the expression ma,
typing m⋅a would be correct, but mxa would be incorrect".
Solution to the problem
For this case we want to write a expression for ma, and based on the previous info we can write:
ma= ma
m⋅a = m⋅a
And equivalently:
am=ma
a⋅m = m⋅a
But is not correct do this:
mxa=mxa
axm = mxa
Answer:
0.6
Explanation:
The volume of a sphere = 
Therefore 
r of the disc = 
Using conservation of angular momentum;
The
of the sphere = 
of the disc = 

= 0.6
As the external magnetic field decreases, an induced current flows in the coil. The direction of the induced magnetic field would be pointing to the screen. The flux through the coil is said to decrease. In order to counter this change, the coil would generate or produce a magnetic field that is induced that would be pointing to the same direction as the external field that is flowing which is into the the screen. This is according to Lenz's law or the right hand rule. It states that an induced current in a circuit that is due to the change or motion in magnetic field should be directed opposing to the change in the flux.
molecular cloud <interstellar cloud <1 Msun protostar <1 Msun star <intercloud gas
Explanation:
<u>Molecular cloud-</u> They are a variety of interstellar cloud in which molecular hydrogen can sustain themselves. They have a very low temperature ranging from -440 to -370 degrees Fahrenheit or between<u> 10 to 50 Kelvin. </u>Owing to their extremely low temperature, they appear mostly dark when viewed through telescopes.
<u>Interstellar cloud-</u> They are a congregation of a large number of interstellar gases, dust and plasma in any galaxy or universe. They have varying temperature depending on their proximity to a star. E.g. Neutral hydrogen atom clouds have a temperature of around <u>just 100 Kelvin</u> while those in the near vicinity of a star have temperatures as high as 10,000 Kelvin.
<u>1 Msun star-</u> These stars have temperature anywhere between <u>5300 and 6000 Kelvin</u>. The main source of such high surface temperature is nuclear fusion process where elemental hydrogen molecules are fused to form helium molecules.
<u>1 Msun protostar-</u> protostar is rather a young star which is still in formation phase (i.e. gathering mass from the parent molecular cloud). They have temperature anywhere between <u>2000-3000</u> kelvin and are accompanied by dust usually.
<u>Intercloud gas- </u>These are the remainder gases that are spread throughout the interstellar space. This Intercloud gas is divided into warm intercloud medium and extremely hot coronal gas with temperatures comparing to Sun’s corona. Warm intercloud forms the dominant part of intercloud gas with a temperature around <u>8000 Kelvin</u>.
1) weight of the box: 980 N
The weight of the box is given by:

where m=100.0 kg is the mass of the box, and
is the acceleration due to gravity. Substituting in the formula, we find

2) Normal force: 630 N
The magnitude of the normal force is equal to the component of the weight which is perpendicular to the ramp, which is given by

where W is the weight of the box, calculated in the previous step, and
is the angle of the ramp. Substituting, we find

3) Acceleration: 
The acceleration of the box along the ramp is equal to the component of the acceleration of gravity parallel to the ramp, which is given by

Substituting, we find
