answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
2 years ago
7

A solid metal sphere of diameter D is spinning in a gravity-free region of space with an angular velocity of ωi. The sphere is s

lowly heated until it reaches its melting temperature, at which point it flattens into a uniform disk of thickness D 2 . By what factor is the angular velocity changed? (Give your answer as a factor of ωi.)
Physics
1 answer:
Leona [35]2 years ago
5 0

Answer:

0.6

Explanation:

The volume of a sphere = \frac{4}{3} \pi (\frac{D}{2})^3

Therefore \pi * r^2 * (\frac{D}{2} ) = \frac{4}{3} \pi (\frac{D}{2})^3

r of the disc = 1.15(\frac{ D}{2} )

Using conservation of angular momentum;

The M_i of the sphere = \frac{2}{5} m \frac{D}{2}^2

M_i of the disc = m*\frac{   \frac{1.15*D}{2}^2 }{2}

\frac{wd}{ws} = \frac{\frac{2}{5}m * \frac{D}{2}^2}{  m * \frac{(\frac{`.`5*D}{2})^2 }{2} }

= 0.6

You might be interested in
Alyssa is carrying a water balloon while running down a field at a speed of 14 m/s. She tosses the water balloon forward toward
Luda [366]
From Alyssa's point of view, the water balloon is at first at rest and then gets thrown with a velocity of 23m/s. Therefore the balloon will have a speed of 23m/s for Alyssa.

At the same time, Naya is watching, and she sees the balloon at the beginning moving at a speed of 14m/s along with Alyssa, and then pushed forward of other 23m/s. Therefore, from her point of view, the balloon will have a speed of 14+23 = 37m/s.

Hence, the correct answer is <span>D) The speed of the balloon is 23 m/s for Alyssa and 37 m/s for Naya. </span>
4 0
2 years ago
Read 2 more answers
In a power plant, pipes transporting superheated vapor are very common. Superheated vapor flows at a rate of 0.3 kg/s inside a p
grigory [225]

Answer:h=160.84 W/m^2-K

Explanation:

Given

mass flow rate=0.3 kg/s

diameter of pipe=5 cm

length of pipe=10 m

Inside temperature=22

Pipe surface =100

Temperature drop=30

specific heat of vapor(c)=2190 J/kg.k

heat supplied Q=mc\Delta T=0.3\times 2190\times (30)

Heat due to convection =hA(100-30)

A=\pi d\cdot L

A=\pi 0.05\times 10=1.571 m^2

Q_{convection}=h\times 1.571\times (100-22)=122.538 h

Q=Q_{convection}

19,710=122.538 h

h=160.84 W/m^2-K

5 0
2 years ago
The electric field at a point 2.8 cm from a small object points toward the object with a strength of 180,000 N/C. What is the ob
givi [52]

Answer:

Charge, Q=1.56\times 10^{-8}\ C

Explanation:

It is given that,

Electric field strength, E = 180000 N/C

Distance from a small object, r = 2.8 cm = 0.028 m

Electric field at a point is given by :

E=\dfrac{kQ}{r^2}

Q is the charge on an object

Q=\dfrac{Er^2}{k}

Q=\dfrac{180000\ N/C\times (0.028\ m)^2}{9\times 10^9\ Nm^2/C^2}

Q=1.56\times 10^{-8}\ C

So, the charge on the object is 1.56\times 10^{-8}\ C. Hence, this is the required solution.

7 0
2 years ago
This is really urgent
hodyreva [135]

20) When light passes from air to glass and then to air

21) When a light ray enters a medium with higher optical density, it bends towards the normal

22) Index of refraction describes the optical density

23) Light travels faster in the material with index 1.1

24) Glass refracts light more than water

25) Index of refraction is n=\frac{c}{v}

26) Critical angle: [tex]sin \theta_c = \frac{n_2}{n_1}[/tex]

27) Critical angle is larger for the glass-water interface

Explanation:

20)

It is possible to slow down light and then speed it up again by making light passing from a medium with low optical density (for example, air) into a medium with higher optical density (for example, glass), and then make the light passing again from glass to air.

This phenomenon is known as refraction: when a light wave crosses the interface between two different mediums, it changes speed (and also direction). The speed decreases if the light passes from a medium at lower optical density to a medium with higher optical density, and viceversa.

21)

The change in direction of light when it passes through the boundary between two mediums is given by Snell's law:

n_1 sin \theta_1 = n_2 sin \theta_2

with

n_1, n_2 are the refractive index of 1st and 2nd medium

\theta_1, \theta_2 are the angle of incidence and refraction (the angle between the incident ray (or refracted ray) and the normal to the boundary)

The larger the optical density of the medium, the larger the value of n, the smaller the angle: so, when a light ray enters a medium with higher optical density, it bends towards the normal.

22)

The index of refraction describes the optical density of a medium. More in detail:

  • A high index of refraction means that the material has a high optical density, which means that light travels more slowly into that medium
  • A low index of refraction means that the material has a low optical density, which means that light travels faster into that medium

Be careful that optical density is a completely different property from density.

23)

As we said in part 22), the index of refraction describes the optical density of a medium.

In this case, we have:

  • A material with refractive index of 1.1
  • A material with refractive index of 2.2

As we said previously, light travels faster in materials with a lower refractive index: therefore in this case, light travels more quickly in material 1, which has a refractive index of only 1.1, than material 2, whose index of refraction is much higher (2.2).

24)

Rewriting Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1 (1)

For light moving from air to water:

n_1 \sim 1.00 is the index of refraction of air

n_2 = 1.33 is the index of refraction ofwater

In this case, \frac{n_1}{n_2}=\frac{1.00}{1.33}=0.75

For light moving from air to glass,

n_2 = 1.51 is the index of refraction of glass

And so

\frac{n_1}{n_2}=\frac{1.00}{1.51}=0.66

From eq.(1), we see that the angle of refraction \theta_2 is smaller in the 2nd case: so glass refracts light more than water, because of its higher index of refraction.

25)

The index of refraction of a material is

n=\frac{c}{v}

c is the speed of light in a vacuum

v is the speed of light in the material

So, the index of refraction is inversely proportional to the speed of light in the material:

  • The higher the index of refraction, the slower the light
  • The lower the index of refraction, the faster the light

26)

From Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1

We notice that when light moves from a medium with higher refractive index to a medium with lower refractive index, n_1 > n_2, so \frac{n_1}{n_2}>1, and since sin \theta_2 cannot be larger than 1, there exists a maximum value of the angle of incidence \theta_c (called critical angle) above which refraction no longer occurs: in this case, the incident light ray is completely reflected into the original medium 1, and this phenomenon is called total internal reflection.

The value of the critical angle is given by

sin \theta_c = \frac{n_2}{n_1}

For angles of incidence above this value, total internal reflection occurs.

27)

Using:

sin \theta_c = \frac{n_2}{n_1}

For the interface glass-air,

n_1 \sim 1.51\\n_2 = 1.00

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.00}{1.51})=41.5^{\circ}

For the interface glass-water,

n_1 \sim 1.51\\n_2 = 1.33

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.33}{1.51})=61.7^{\circ}

So, the critical angle is larger for the glass-water interface.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

7 0
2 years ago
010) Identify the true statement. Group of answer choices The height of waves is determined by wind strength and fetch. Wave bas
AlekseyPX

Answer:

The height of the wave is determined by the wind strength and fetch.

Explanation:

The height of the wave is determined by the wind strength and fetch.

The more the strength and the more the fetch size the more will be the height of the wave.

Remember as the wave approaches the coast its wavelength decreases and the wave height increases, whereas when the wave goes away from the coast its wavelength increases and height decreases.

7 0
2 years ago
Other questions:
  • There have been several proposed atomic models during the last 150 years. Which model best illustrates the Bohr model. This mode
    10·2 answers
  • A 1.00 l sample of a gas at 25.0◦c and 1.00 atm contains 50.0 % helium and 50.0 % neon by mass. what is the partial pressure of
    12·2 answers
  • In a ceiling fan, electrical energy, N, is transferred to another form, M. Energy transfers are never 100% efficient. Some of th
    15·2 answers
  • Tendons are strong elastic fibers that attach muscles to bones. To a reasonable approximation, they obey Hooke's law. In laborat
    14·1 answer
  • According to US government regulations, the maximum sound intensity level in the workplace is 90.0 dB. Within one factory, 32 id
    8·1 answer
  • A diamond is cut such that the angle between its top surface and its bottom surface is α. For α=45∘, find the largest possible v
    14·1 answer
  • Q9: Suppose that the metal cylinder in the last problem has a mass of 0.10 kg and the coefficient of static friction between the
    8·1 answer
  • a horse gallops a distance of 60 meters in 15 seconds. then, he stops to eat some grass for 20 seconds. next, he trots for 25 se
    5·1 answer
  • For a particular type of motion, the velocity is zero but the speed is a nonzero quantity. Which statement can you make about th
    5·1 answer
  • A cyclist traveling at 5m/s uniformly accelerates up to 10 m/s in 2 seconds. Each tire of the bike has a 35 cm radius, and a sma
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!