answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
11

Water, of density 1000 kg/m3, is flowing in a drainage channel of rectangular cross-section. The width of the channel is 15 m, t

he depth of the water is 8.0 m and the speed of the flow is 2.5 m/s. At what rate is water flowing in this channel?
Physics
1 answer:
Rom4ik [11]2 years ago
8 0

Answer:

Water flowing rate=  (300000kg/s) = (300000l/s)

Explanation:

First with the section of the channel, the depth of the water and the speed of the fluid we can determine the volume of fluid that circulates per second through the channel:

Volume per time= 15m × 8m × (2.5m/s)= 300 m³/s

With this volume of circulating fluid per second elapsed, we multiply it by the density of the water to determine the kilograms or liters of water that circulate through the channel per second elapsed:

Water flowing rate= (300m³/s) × (1000kg/m³)= (300000kg/s) = (300000l/s)

Taking into account that 1kg of water is approximately equal to 1 liter of water.

You might be interested in
While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the
____ [38]

As per the question Bob drops the bag full with feathers from the top of the building.

The mass of the bag(m)= 1.0 lb

Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.

Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2


Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s

Hence time t= 1.5 s

From equation of kinematics we know that -

                S=ut + 0.5at^2     [ here S is the distance travelled]

For motion under free fall initial velocity (u)=0.

Hence   S= 0×1.5+{0.5×(-9.8)×(1.5)^2}

           ⇒ -S =0-11.025 m

            ⇒ S= 11.025 m

                   =11 m

Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .


Hence the correct option is B.

               

3 0
2 years ago
Read 2 more answers
A girl swings on a playground swing in such a way that at her highest point she is 4.1 m from the ground, while at her lowest po
Umnica [9.8K]

Answer:

V1 =8.1 m/s

Explanation:

height at highest point (h2) = 4.1 m

height at lowest point (h1) = 0.8 m

acceleration due to gravity (g) = 9.8 m/s^{2}

from conservation of energy, the total energy at the lowest point will be the same as the total energy at the highest point. therefore

mgh1 + 0.5mV1^{2} = mgh2 + 0.5mV2^{2}

where

  • speed at highest point = V2
  • speed at lowest point = V1
  • mass of the girl and swing = m
  • at the highest point, the  speed is minimum (V1 = 0)
  • at the lowest point the speed is maximum (V2 is the maximum speed)
  • therefore the equation becomes mgh1 + 0.5mV1^{2} = mgh2

      m(gh1 + 0.5V1^{2}) = m(gh2)

      gh1 + 0.5V1^{2} = gh2

      V1 = \sqrt{\frac{gh2 - gh1}{0.5}}

now we can substitute all required values into the equation above.

V1 = \sqrt{\frac{(9.8x4.1) - (9.8x0.8)}{0.5}}

V1 = \sqrt{\frac{32.34}{0.5}}

V1 =8.1 m/s

8 0
2 years ago
If the volume of an object is reported as 5.0 ft3 what is the volume in cubic meters
12345 [234]
The problem statement is simply asking us to convert units. We convert from units of ft^3 to units of m^3. To do this, we need a conversion factor. For this case, we use 1 m is equal to 3.28084 ft. We do as follows:

5.0 ft^3 ( 1 m / 3.28084 ft )^3 = 0.1416 m^3
3 0
2 years ago
Dane is standing on the moon holding an 8 kilogram brick 2 metres above the ground. How much energy is in the brick's gravitatio
Nadya [2.5K]

The gravitational potential energy of the brick is 25.6 J

Explanation:

The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.

Near the surface of a planet, the gravitational potential energy is given by

PE=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the height of the object relative to the ground

For the brick in this problem, we have:

m = 8 kg is its mass

g = 1.6 N/kg is the strenght of the gravitational field on the moon

h = 2 m is the height above the ground

Substituting, we find:

PE=(8)(1.6)(2)=25.6 J

Learn more about potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

3 0
2 years ago
Read 2 more answers
A spaceship of frontal area 10 m2 moves through a large dust cloud with a speed of 1 x 106 m/s. The mass density of the dust is
Step2247 [10]

Answer:

The decelerating force is 3\times 10^{- 11}\ N

Solution:

As per the question:

Frontal Area, A = 10\ m^{2}

Speed of the spaceship, v = 1\times 10^{6}\ m/s

Mass density of dust, \rho_{d} = 3\times 10^{- 18}\ kg/m^{3}

Now, to calculate the average decelerating force exerted by the particle:

Mass,\ m = \rho_{d}V                                (1)

Volume, V = A\times v\times t

Thus substituting the value of volume, V in eqn (1):

m = \rho_{d}(Avt)

where

A = Area

v = velocity

t = time

m = \rho_{d}(A\times v\times t)                  (2)

Momentum,\ p = \rho_{d}(Avt)v = \rho_{d}Av^{2}t

From Newton's second law of motion:

F = \frac{dp}{dt}

Thus differentiating w.r.t time 't':

F_{avg} = \frac{d}{dt}(\rho_{d}Av^{2}t) = \rho_{d}Av^{2}

where

F_{avg} = average decelerating force of the particle

Now, substituting suitable values in the above eqn:

F_{avg} = 3\times 10^{- 18}\times 10\times 1\times 10^{6} = 3\times 10^{- 11}\ N

4 0
1 year ago
Other questions:
  • In a game of egg-toss, you and a partner are throwing an egg back and forth trying not to break it. Given your knowledge of mome
    8·1 answer
  • Consider the vector b⃗ with magnitude 4.00 m at an angle 23.5∘ north of east. what is the x component bx of this vector? express
    6·1 answer
  • Why to astronauts appear weightless while they are filmed performing activities inside the orbiting space shuttle? they are high
    6·1 answer
  • 40-turn circular coil (radius = 4.0 cm, total resistance = 0.20 ) is placed in a uniform magnetic field directed perpendicular
    5·1 answer
  • In aviation, it is helpful for pilots to know the cloud ceiling, which is the distance between the ground and lowest cloud. The
    11·1 answer
  • The blood plays an important role in removing heat from th ebody by bringing the heat directly to the surface where it can radia
    13·1 answer
  • Maria throws an apple vertically upward from a height of 1.3 m with an initial velocity of +2.8 m/s. Will the apple reach a frie
    13·1 answer
  • A mirror forms an erect image 40cm from the object and one third its height where must the mirror be situated ​
    12·1 answer
  • If the potential energy of the product is less than that of the reactants, the energy released when an activated complex forms a
    15·2 answers
  • Which shows the correct lens equation? The inverse of f equals the inverse of d Subscript o Baseline times the inverse of d Subs
    16·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!