Complete Question:
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth’s mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.
Answer:
m = 0.001 M
For the whole process check the following page: https://www.slader.com/discussion/question/suppose-that-an-asteroid-traveling-straight-toward-the-center-of-the-earth-were-to-collide-with-our/
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2
Answer:
The cannonball fly horizontally before it strikes the ground, S = 323.25 m
Explanation:
Given data,
The height of the cliff, h = 80 m
The horizontal velocity of the cannonball, Vₓ = 80 m/s
The range of the cannon ball with initial vertical velocity is zero is given by the formula,


S = 323.25 m
Hence, the cannonball fly horizontally before it strikes the ground, S = 323.25 m
The labeled points which is Letter B in the given Image is the point that the axis of rotation passes through. This problem is an example of rotational dynamics, formerly an object moves in a straight line then the motion is translational but when an object at inactivity lean towards to continue at inactivity and an object in rotation be possible to continue rotating with continuous angular velocity unless bound by a net external torque to act then is rotational. In a rotational motion, the entity is not treated as a constituent part but is treated in translational motion. It points out with the study of torque that outcomes angular accelerations of the object.