The average velocity of Sandy is given by the total distance covered S divided by the total time taken t:

The total distance covered is

while the total time taken is 2 hours + half an hour (for the rest) + 1 hour and half, so

Therefore, the average velocity is
Answer:
b) It is impossible to tell without knowing the masses.
Explanation:
The temperature change of a substance when it receives/gives off a certain amount of heat Q is given by

where
Q is the amount of heat
m is the mass of the substance
Cs is the specific heat capacity of the substance
In this case, we have a hot piece of aluminum in contact with a cold piece of copper: the amount of heat given off by the aluminum is equal to the amount of heat absorbed by the copper, so Q is the same for the two substances. However, we see that the temperature change of the two substances depends on two other factors: the mass, m, and the specific heat, Cs. So, since we know only the specific heat of the two substances, but not their mass, we can't tell which object will experience the greater temperature change.
Inertia IS always present. Inertia is NOT the force that causes objects to continue moving in circles, that is centripetal force. Centripetal force is NOT always present. Centripetal force DOES pull objects toward the center of a circle. <span> Inertia and centripetal force DOES cause circular motion. Thank you and eat sand fren ;)</span>
The concept used in this is circuit analysis using the simplification of resistors and capacitors.
Explanation:
The time constant for each of the circuits in figure A, B, C, D and E. Therefore, rank the length of time the bulbs stay lit from longest to shortest by using the value of time constant for each circuit. The rank of the time constant of the circuit is C > A = E > B > DC > A = E > B > D.
Capacitance is the central concept in electrostatics and constructed devices called capacitors are essential elements of electronic circuits.
If more charge is placed on the conductor the voltage increases proportionately. The ratio of the charge to the voltage is called the capacitance C of the conductor C= q/v.
The resistance increases if you add resistors in series and decreases if you add them in parallel. on the other hand the capacitors increases if it is added parallel and decreases if added in series. hence the circuit longest time constant takes longest time to discharge.
Hot combustion gases are accelerated in a 92% efficient
adiabatic nozzle from low velocity to a specified velocity. The exit velocity
and the exit temp are to be determined.
Given:
T1 = 1020 K à
h1 = 1068.89 kJ/kg, Pr1 = 123.4
P1 = 260 kPa
T1 = 747 degrees Celsius
V1 = 80 m/s ->nN = 92% -> P2
= 85 kPa
Solution:
From the isentropic relation,
Pr2<span> = (P2 / P1)PR1 = (85
kPa / 260 kPa) (123.4) = 40.34 = h2s = 783.92 kJ/kg</span>
There is only one inlet and one exit, and thus, m1 =
m2 = m3. We take the nozzle as the system, which is a
control volume since mass crosses the boundary.
h2a = 1068.89 kJ/kg – (((728.2 m/s)2 –
(80 m/s)2) / 2) (1 kJ/kg / 1000 m2/s2) =
806.95 kJ/kg\
From the air table, we read T2a = 786.3 K