Answer:
0.0016 cm
Explanation:
= Thermal coefficient of expansion of brass = 
= Thermal coefficient of expansion of glass = 
= Change in temperature = 
= Initial radius = 4 cm
Change in radius of material is given by

Difference in radii of the lid and jar

The size of the gap is 0.0016 cm or 0.000016 m
Answer:
V_infinty=98.772 m/s
Explanation:
complete question is:
The following problem assume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23kg/m3(0.002377slug/ft3) and 1.01imes105N/m2(2116lb/ft2), respectively. A Pitot tube on an airplane flying at standard sea level reads 1.07imes105N/m2. What is the velocity of the airplane?
<u>solution:</u>
<u>given:</u>
<em>p_o=1.07*10^5 N/m^2</em>
<em>ρ_infinity=1.23 kg/m^2</em>
<em>p_infinity=1.01*10^5 N/m^2</em>
p_o=p_infinity+(1/2)*(ρ_infinity)*V_infinty^2
V_infinty^2=9756.097
V_infinty=98.772 m/s
Answer:
q2 must also be doubled
r may also be halved
Explanation:
According to Coulumbs law
F= K q1 q2/r^2
If q1 is doubled, we must necessarily double q2 and r may also be halved in order to maintain F at the same value. Once the value of F is thus kept constant and E is also constant, the product FE must remain constant.
Weight expressed in Newtons is expressed in the equation whereby Weight= the mass of an object * the force of gravity. The force of gravity on earth is a constant 9.8 meters per second squared. Therefore if weight (w) = 63 N and the force of gravity is 63 N then the mass must equal 6.43 kg. Because the equation for weight is w=mg so 63 N (w) = m * 9.8 m/s^2.