Apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 180kPa, T = -8.0°C = 265.15K
Final P and T values:
P = 245kPa, T = ?
Set the initial and final P/T values equal to each other and solve for the final T:
180/265.15 = 245/T
T = 361K
Answer: The comet's average distance from the sun is 17.6AU
Explanation:
From Kepler's 3rd Law, P^2=a^3
Where P is period in years
and a is length of semi-major axis or the average distance of the comet to the sun.
Given the orbital period to be 74 years
74^2 =a^3
5476 = a^3
Cube root of 5476 =a
17.626 = a
Approximately a= 17.6 AU
Answer: A) 
Explanation:
The equation for the moment of inertia
of a sphere is:
(1)
Where:
is the moment of inertia of the planet (assumed with the shape of a sphere)
is the mass of the planet
is the radius of the planet
Isolating
from (1):
(2)
Solving:
(3)
Finally:
Therefore, the correct option is A.
Answer:
B
Explanation:
The capacitor is a component which has the ability to store energy in the form of an electrical charge making a potential difference on those two metal plates
A capacitor consists of two or more parallel conductive (metal) plates. They are electrically seperated by an insulating material (ex: air, mica,ceramic etc.) which is called as Dielectric Layer
Due to this insulating layer, DC current can not flow through the capacitor.But it allows a voltage to be present across the plates in the form of an electrical charge.
Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.