answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
2 years ago
10

: Two containers have a substantial amount of the air evacuated out of them so that the pressure inside is half the pressure at

sea level. One container is in Denver at an altitude of about 6,000 ft and the other is in New Orleans (at sea level). The surface area of the container lid is 4 -0.0155 m. The air pressure in Denver is PD - 79000 Pa. and in New Orleans is Pro=100250 Pa. Assume the lid is weightless.
Part (a) Write an expression for the force FNo required to remove the container lid in New Orleans.
Part (b) Calculate the force Fno required to lift off the container lid in New Orleans, in newtons.
Part (c) Calculate the force Fp required to lift off the container lid in Denver, in newtons.
Part (d) is more force required to lift the lid in Denver (higher altitude, lower pressure) or New Orleans (lower altitude, higher pressure)?
Physics
1 answer:
ser-zykov [4K]2 years ago
6 0

Complete Question

Two containers have a substantial amount of the air evacuated out of them so that the pressure inside is half the pressure at sea level. One container is in Denver at an altitude of about 6,000 ft and the other is in New Orleans (at sea level). The surface area of the container lid is A=0.0155 m. The air pressure in Denver is PD = 79000 Pa. and in New Orleans is PNo = 100250 Pa. Assume the lid is weightless.

Part (a) Write an expression for the force FNo required to remove the container lid in New Orleans.

Part (b) Calculate the force FNo required to lift off the container lid in New Orleans, in newtons.

Part (c) Calculate the force Fp required to lift off the container lid in Denver, in newtons.

Part (d) is more force required to lift the lid in Denver (higher altitude, lower pressure) or New Orleans (lower altitude, higher pressure)?

Answer:

a

The  expression is   F_{No} =   A [P_{No} - \frac{P_{sea}}{2}]

b

F_{No}= 7771.125 \ N

c

 F_p = 2.2*10^{6} N

d

From the value obtained we can say the that the force required to open the lid is higher at Denver

Explanation:

          The altitude of container in Denver is  d_D = 6000 \ ft = 6000 * 0.3048 = 1828.8m

           The surface area of the container lid is A = 0.0155m^2

           The altitude of container in New Orleans  is sea-level

           The air pressure in Denver is  P_D = 79000 \ Pa

            The air pressure in new Orleans is P_{ro} = 100250 \ Pa

Generally force is mathematically represented as

            F_{No} = \Delta P A

  So we are told the pressure inside is  is half the pressure the at sea level so the  the pressure acting on the container would

   The  pressure at sea level is a constant with a  value of  

               P_{sea} = 101000 Pa

So the \Delta P which is the difference in pressure within and outside the container is  

           \Delta P = P_{No} - \frac{P_{sea}}{2}

Therefore

                F_{No} =   A [P_{No} - \frac{P_{sea}}{2}]

Now substituting values

                F_{No} =   0.0155 [100250 - \frac{101000}{2}]

                       F_{No}= 7771.125 \ N

The force to remove the lid in Denver is  

           F_p = \Delta P_d A

So we are told the pressure inside is  is half the pressure the at sea level so the  the pressure acting on the container would

 The  pressure at sea level is a constant with a  value of  

               P_{sea} = 101000 Pa    

 At  sea level the air pressure in Denver is mathematically represented as

              P_D = \rho g h

     =>     g = \frac{P_D}{\rho h}      

Let height at sea level is h = 1

  The air pressure at height d_D

             P_d__{D}} = \rho gd_D

    =>     g = \frac{P_d_D}{\rho d_D}

  Equating the both

                 \frac{P_D}{\rho h}  = \frac{P_d_D}{\rho d_D}

                 P_d_D =  P_D * d_D

Substituting value  

                   P_d__{D}} = 1828.2 * 79000

                    P_d__{D}} = 1.445*10^{8} Pa

    So

              \Delta P_d  = P_{d} _D - \frac{P_{sea}}{2}

=>          \Delta P_d  = 1.445 *10^{8} - \frac{101000}{2}    

                        \Delta P_d = 1.44*10^{8}Pa

  So

               F_p = \Delta P_d A

                  = 1.44*10^8 * 0.0155

              F_p = 2.2*10^{6} N

               

                 

             

             

You might be interested in
What is the tangential velocity at the edge of a disk of radius 10cm when it spins with a frequency of 10Hz? Give your answer wi
Nina [5.8K]

Answer:

630cm/s

Explanation:

In simple harmonic motion, the tangential velocity is expressed mathematically as v = ὦr

ὦ is the angular velocity = 2πf

r is the radius of the disk

f is the frequency

Given the radius of disk = 10cm

frequency = 10Hz

v = 2πfr

v = 2π×10×10

v = 200π

v = 628.32 cm/s

The tangential velocity = 630cm/s ( to 2 significant figures)

8 0
2 years ago
Planetary orbits... are spaced more closely together as they get further from the Sun. are evenly spaced throughout the solar sy
BaLLatris [955]

Answer:

E) are almost circular, with low eccentricities.

Explanation:

Kepler's laws establish that:

All the planets revolve around the Sun in an elliptic orbit, with the Sun in one of the focus (Kepler's first law).

A planet describes equal areas in equal times (Kepler's second law).

The square of the period of a planet will be proportional to the cube of the semi-major axis of its orbit (Kepler's third law).

T^{2} = a^{3}

Where T is the period of revolution and a is the semi-major axis.

Planets orbit around the Sun in an ellipse with the Sun in one of the focus. Because of that, it is not possible to the Sun to be at the center of the orbit, as the statement on option "C" says.

However, those orbits have low eccentricities (remember that an eccentricity = 0 corresponds to a circle)

In some moments of their orbit, planets will be closer to the Sun (known as perihelion). According with Kepler's second law to complete the same area in the same time, they have to speed up at their perihelion and slow down at their aphelion (point farther from the Sun in their orbit).

Therefore, option A and B can not be true.

In the celestial sphere, the path that the Sun moves in a period of a year is called ecliptic, and planets pass very closely to that path.  

4 0
2 years ago
A 4.0-mF capacitor initially charged to 50 V and a 6.0-mF capacitor charged to 30 V are connected to each other with the positiv
Juli2301 [7.4K]

Answer:

<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>

Explanation:

The initial charge on 4 mF capacitor  = 4 mf  x 50 V = 200 mC

The initial Charge on 6 mF capacitor  = 6 mf x 30 V =180 mC

Since the negative ends are joined together  the total charge on both capacity would be;

q = q_{1} -q_{2}

q = 200 - 180

q = 20 mC

In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage

q = (4 x V) + (6 x V)

20 = 10 V

V = 2 V

For the final charge on 6.0 mF;

q = CV

q = 6.0 mF x 2 V

q =  12 mC

Therefore the final charge on the 6.0 mF capacitor would be 12 mC

5 0
2 years ago
Read 2 more answers
Sketch a position-time graph for a bear starting
Dmitrij [34]

Explanation:

hopefully that makes sense. the position doesn't change over the 5 seconds, meaning it's stopped but time still continues. then when the slope is negative this shows the bear's position becoming negative (backing up, changing direction).

3 0
2 years ago
A gas of helium atoms at 273 k is in a cubical container with 25.0 cm on a side. (a) what is the minimum uncertainty in momentum
qwelly [4]

wave function of a particle with mass m is given by ψ(x)={ Acosαx −

π

2α

≤x≤+

π

2α

0 otherwise , where α=1.00×1010/m.

(a) Find the normalization constant.

(b) Find the probability that the particle can be found on the interval 0≤x≤0.5×10−10m.

(c) Find the particle’s average position.

(d) Find its average momentum.

(e) Find its average kinetic energy −0.5×10−10m≤x≤+0.5×10−10m.

6 0
2 years ago
Other questions:
  • A train travels a distance of 1,2 km between two stations with an average velocity of 43.2 km/h. During it's motion, at the time
    10·1 answer
  • Two bar magnets are labeled A and B. The ends of each magnet are numbered 1 or 2, but the poles are not labeled. When A1 is brou
    6·2 answers
  • Ali hypothesized that increasing fertilizer would increase plant growth. Four groups of thirty similar plants were given 0 to 15
    7·2 answers
  • When driving in heavy rain, or on a flooded road, your tires can ride on a thin film of water like skis;
    10·1 answer
  • A fish appears to be 2.00 m below the surface of a pond (nwater = 1.33) when viewed almost directly above by a fisherman. What i
    7·2 answers
  • Consider a person standing in an elevator that is moving at constant speed upward. The person, of mass m, has two forces acting
    5·2 answers
  • Why is it unwise to stir a pot of soup with a metal spoon?
    14·2 answers
  • For a particular reaction, the change in enthalpy is 51kJmole and the activation energy is 109kJmole. Which of the following cou
    6·1 answer
  • Write a hypothesis about the effect of the fan speed on the acceleration of the cart. Use the "if . . . then . . . because . . .
    13·2 answers
  • A student redid the experiment of mixing room-temperature water and warm
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!