answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bas_tet [7]
2 years ago
8

A 0.0140 kg bullet traveling at 205 m/s east hits a motionless 1.80 kg block and bounces off it, retracing its original path wit

h a velocity of 103 m/s west. What is the final velocity of the block? Assume the block rests on a perfectly frictionless horizontal surface.
Physics
1 answer:
makvit [3.9K]2 years ago
7 0

Answer:

Final velocity of the block = 2.40 m/s east.

Explanation:

Here momentum is conserved.

Initial momentum = Final momentum

Mass of bullet = 0.0140 kg

Consider east as positive.

Initial velocity of bullet = 205 m/s

Mass of Block = 1.8 kg

Initial velocity of block = 0 m/s

Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s

Final velocity of bullet = -103 m/s

We need to find final velocity of the block( u )

Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u

We have

            2.87 = -1.442 + 1.8 u

               u = 2.40 m/s

Final velocity of the block = 2.40 m/s east.

You might be interested in
Suppose your friend claims to have discovered a mysterious force in nature that acts on all particles in some region of space. H
kirill [66]

Answer:

             U = 1 / r²

Explanation:

In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related

             

         F = - dU / dr

this derivative is a gradient, that is, a directional derivative, so we must have

          dU = - F. dr

the esxresion for strength is

         F = B / r³

let's replace

          ∫ dU = - ∫ B / r³  dr

in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product

let's evaluate the integrals

            U - Uo = -B (- / 2r² + 1 / 2r₀²)

To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)

             U = B / 2r²

we substitute the value of B = 2

             U = 1 / r²

5 0
2 years ago
A 35 g steel ball is held by a ceiling-mounted electromagnet 4.0 m above the floor. A compressed-air cannon sits on the floor, 4
HACTEHA [7]

Answer:

7.9 m/s

Explanation:

When both balls collide, they have spent the same time for their motions.

Motion of steel ball

This is purely under gravity. It is vertical.

Initial velocity, <em>u </em>= 0 m/s

Distance, <em>s</em> = 4.0 m - 1.2 m = 2.8 m

Acceleration, <em>a</em> = g

Using the equation of motion

s = ut+\frac{1}{2}at^2

2.8 \text{ m} = 0+\dfrac{gt^2}{2}

t = \sqrt{\dfrac{5.6}{g}}

Motion of plastic ball

This has two components: a vertical and a horizontal.

The vertical motion is under gravity.

Considering the vertical motion,

Initial velocity, <em>u </em>= ?

Distance, <em>s</em> = 1.2 m

Acceleration, <em>a</em> = -<em>g                   </em> (It is going up)

Using the equation of motion

s = ut+\frac{1}{2}at^2

1.2\text{ m} = ut-\frac{1}{2}gt^2

Substituting the value of <em>t</em> from the previous equation,

1.2\text{ m} = u\sqrt{\dfrac{5.6}{g}}-\dfrac{1}{2}\times g\times\dfrac{5.6}{g}

u\sqrt{\dfrac{5.6}{g}} = 4.0

Taking <em>g</em> = 9.8 m/s²,

u = \dfrac{4.0}{0.756} = 5.29 \text{ m/s}

This is the vertical component of the initial velocity

Considering the horizontal motion which is not accelerated,

horizontal component of the initial velocity is horizontal distance ÷ time.

u_h = \dfrac{4.4\text{ m}}{0.756\text{ s}} = 5.82\text{ m/s}

The initial velocity is

v_i = \sqrt{u^2+u_h^2} = \sqrt{(5.29\text{ m/s})^2+(5.82\text{ m/s})^2} = 7.9 \text{ m/s}

4 0
2 years ago
A 1100kg car pulls a boat on a trailer. (a) what total force resists the motion of the car, boat,and trailer, if the car exerts
likoan [24]
Refer to the figure shown below.

m₁ = 1100 kg, the mass of the car
m₂ = 700 kg, the mass of the trailer and boat
F = 1900 N, the driving force acting on the car
N₁ = m₁g,  the normal reaction on the car
N₂ = m₂g, the normal force on the trailer and boat
μN₁ and μN₂ are frictional forces, where  =  kinetic coefficient of friction
T = the force in the hitch between the car and trailer.

Part (a)
Let R₁ = the total force that resists the motion of the car, boat, and trailer.
Because the acceleration is 0.550m/s², therefore
(m₁ + m₂ kg)*(0.55 m/s²) = F
(1100+700 kg)*(0.55 m/s²) = (1900 - R₁) N
990 = 1900 - R
R₁ = 910 N

Answer: The resistive force is 910 N

Part (b)
80% of the resistive forces are experienced by the boat and trailer.
Let the resistive force be R₂.
Then
R₂ = 0.8*R₁ = 728 N
If the tension in the hitch between the car and the trailer is T, then
T - R₂ = m₂(0.55 m/s²)
(T - 728 N) = (700 kg)*(0.55 m/s²)
T - 728 = 385
T = 1113 N

Answer: The force in the hitch is 1113 N

3 0
2 years ago
An object weighs 200 newtons at a distance of 100 kilometers above the center of a small uniform planet. how much will the objec
disa [49]

Since the law of gravitation is an inverse square law if you quadruple the radius the f will drop by a factor of 16 SO the object would weigh 200/16 = 12.5N

In other words, as the distance, or radius, quadruples the weight becomes 1/16 of the original weight. Just plug in 4 for r and when you square it you get 16. The numerator is 1 so that is how the weight becomes 1/16.

7 0
2 years ago
Carly places one end of a steel bar in a Bunsen flame and the other end in an ice cube.
slamgirl [31]

Answer:

answer a) 2

Explanation:

Assuming stationary state, following Fourier's law:

Q = A*k* dT/dL

where Q= heat flow , A= cross sectional area, dT/dL= temperature gradient along the bar

if the cross sectional area is doubled , then the gradient is the same ( since the heat sources do not change in temperature or position , and the length of the bar is the same). Since the gradient is same , the temperature is the same under stationary conditions , then we can assume k remains constant in the cross section.Therefore

Q₁= A₁*k* dT/dL

Q₂= A₂*k* dT/dL

dividing both equations

Q₂ / Q₁ = A₂/A₁ = 2

then the correct answer is a)

Note:

Since the cross sectional area is doubled, then heat loss to the surroundings will be

Q loss= h* A exposed * ΔT

then

Q loss₂ / Q loss ₁ = A exposed ₂/ A exposed  ₁

for a circular cross section or a squared cross section

A exposed ₂/ A exposed  ₁ = √2

then

Q loss₂ / Q loss ₁ = √2

therefore we did not take into account the increase in heat loss due to the increased in exposed area to the environment

5 0
2 years ago
Other questions:
  • A solid element that is malleable' a good conductor of electricity, and reacts with oxygen is classified as a
    14·1 answer
  • A 60 kg student in a rowboat on a still lake decides to dive off the back of the boat. The studen'ts horizontal aceleration is 2
    9·1 answer
  • A superman cyclist rode a bike uphill at 20 miles/hour for two hours. To sustain this constant speed the cyclist was exerting 50
    10·1 answer
  • A slender rod is 80.0 cm long and has mass 0.370 kg . A small 0.0200-kg sphere is welded to one end of the rod, and a small 0.05
    5·1 answer
  • In the 25-ft Space Simulator facility at NASA's Jet Propulsion Laboratory, a bank of overhead arc lamps can produce light of int
    12·1 answer
  • Consider the Bohr energy expression (Equation 30.13) as it applies to singly ionized helium He+ (Z = 2) and an ionized atom with
    14·1 answer
  • Of the three primary forms of subaerial volcanoes, ________ are large cone-shaped mountains that consist of alternating layers o
    5·1 answer
  • Each metal is illuminated with 400 nm (3.10 eV) light. Rank the metals on the basis of the maximum kinetic energy of the emitted
    14·1 answer
  • Two objects interact with each other and with no other objects. Initially object A has a speed of 5 m/s and object B has a speed
    10·1 answer
  • A lion and a pig participate in a race over a 2.20 km long course. The lion travels at a speed of 18.0 m/s and the pig can do 2.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!