answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bas_tet [7]
2 years ago
8

A 0.0140 kg bullet traveling at 205 m/s east hits a motionless 1.80 kg block and bounces off it, retracing its original path wit

h a velocity of 103 m/s west. What is the final velocity of the block? Assume the block rests on a perfectly frictionless horizontal surface.
Physics
1 answer:
makvit [3.9K]2 years ago
7 0

Answer:

Final velocity of the block = 2.40 m/s east.

Explanation:

Here momentum is conserved.

Initial momentum = Final momentum

Mass of bullet = 0.0140 kg

Consider east as positive.

Initial velocity of bullet = 205 m/s

Mass of Block = 1.8 kg

Initial velocity of block = 0 m/s

Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s

Final velocity of bullet = -103 m/s

We need to find final velocity of the block( u )

Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u

We have

            2.87 = -1.442 + 1.8 u

               u = 2.40 m/s

Final velocity of the block = 2.40 m/s east.

You might be interested in
ery large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge
IgorC [24]

Answer:

2.98 second

Explanation:

The severity index is defined by :

S=a^{5/2}t

a is dimensionless constant that equals the number of multiples of g

Conditions are given as :

Initial velocity, u = 0

Acceleration, a = 34 m/s²

Final velocity, v = 16.4 km/h = 4.56 m/s

We can find t from the above data as follows :

t=\dfrac{v-u}{a}\\\\t=\dfrac{4.56-0}{34}\\\\t=0.134\ s

As a is the acceleration that is multiple of g.

So,

a=\dfrac{34}{9.8}=3.46

So,

Severity index,

S=a^{5/2}t\\\\S=(3.46)^{5/2}\times 0.134\\\\S=2.98\ s

Hence, the severity index for the collision is 2.98 seconds.

6 0
2 years ago
A long thin uniform rod of length 1.50 m is to be suspended from a frictionless pivot located at some point along the rod so tha
Dvinal [7]

Answer:

0.087 m

Explanation:

Length of the rod, L = 1.5 m

Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.

time period, T = 3  s

the formula for the time period of the pendulum is given by

T = 2\pi \sqrt{\frac{I}{mgd}}    .... (1)

where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.

Moment of inertia of the rod about the centre of mass, Ic = mL²/12

By using the parallel axis theorem, the moment of inertia of the rod about the pivot is

I = Ic + md²

I = \frac{mL^{2}}{12}+ md^{2}

Substituting the values in equation (1)

3 = 2 \pi \sqrt{\frac{\frac{mL^{2}}{12}+ md^{2}}{mgd}}

9=4\pi^{2}\times \left ( \frac{\frac{L^{2}}{12}+d^{2}}{gd} \right )

12d² -26.84 d + 2.25 =  0

d=\frac{26.84\pm \sqrt{26.84^{2}-4\times 12\times 2.25}}{24}

d=\frac{26.84\pm 24.75}{24}

d = 2.15 m , 0.087 m

d cannot be more than L/2, so the value of d is 0.087 m.

Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.

3 0
1 year ago
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
2 years ago
_____ has a longer wavelength than _____. _____ has a longer wavelength than _____. Blue ... green Green ... yellow Red ... gree
nadya68 [22]

Answer:

red has a longer wavelength than yellow. Yellow has a longer wavelength than green.

Explanation

in the visible spectrum a color with high frequency  contains shorter wavelength.In this case red color has high wavelength followed by yellow followed by green,blue and violet.

3 0
2 years ago
Read 2 more answers
A sleeping 68 kg man has a metabolic power of 79 w .
Lesechka [4]
 <span>65W * 8h * 3600s/h = 1.9e6 J = 447 Cal </span>
3 0
2 years ago
Other questions:
  • A glider moving with a speed of 200 kilometers/hour experiences a cross wind of 30 kilometers/hour. What is the resultant speed
    5·1 answer
  • A car with mass 450 kg has a kinetic energy of 16,256 j. What is the speed of the car?
    9·1 answer
  • A satellite orbiting above the earth needs no power source to keep orbiting the earth. The best explanation for this involves th
    11·2 answers
  • A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-s
    14·2 answers
  • A tennis ball bounces on the floor three times. If each time it loses 22.0% of its energy due to heating, how high does it rise
    9·1 answer
  • You are driving on the highway, and you come to a steep downhill section. As you roll down the hill, you take your foot off the
    12·2 answers
  • Consider as a system the gas in a vertical cylinder; the cylinder is fitted with a piston on which a number of small weights are
    14·1 answer
  • A 1,100 kg car comes uniformly to a stop. If the vehicle is accelerating at -1.2 m/s2 , which force is closest to the net force
    12·2 answers
  • A rock is thrown down from the top of a cliff with a velocity of 3.61 m/s (down). The cliff is 28.4 m above the ground. Determin
    11·1 answer
  • A rock climber’s shoe loosens a rock, and her climbing buddy at the bottom of the cliff notices that the rock takes 3.20 s to fa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!