efficiency= [useful energy transferred ÷ total energy supply]×100%
So, [5500÷10000]×100%=0.55×100
=55%
Explanation:
When Michelson-Morley apparatus is turned through
then position of two mirrors will be changed. The resultant path difference will be as follows.

Formula for change in fringe shift is as follows.
n = 

v = 
According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.
l = 11 m
c =
m/s
Hence, putting the given values into the above formula as follows.
v = 
= 
= 
Thus, we can conclude that velocity deduced is
.
Answer:
The average magnitude of magnetic field B= 0.0433/ d Tesla
(You have not provided length of side of loop, so if you divide this value by length you will get value of magnetic field.)
Explanation:
Induced emf
where B= magnetic field
d= breadth of rectangular piece
V= velocity with which the rectangular piece = o.o6m/s
n= no of turns = 10
EMF = 26mV
since d (breadth of the frame) is not given, I will use it as a variable
EMF= n×B×d×V ------------------(1) (EMF induced due to multiple turns)
From eq 1, we get
B= (EMF)/(n d V)
B= (26 X 0.001) / (10 d 0.06)
B= 0.0433/ d Tesla
Answer:
kick 1 has travelled 15 + 15 = 30 yards before hitting the ground
so kick 2 travels 25 + 25 = 50 yards before hitting the ground
first kick reached 8 yards and 2nd kick reached 20 yards
Explanation:
1st kick travelled 15 yards to reach maximum height of 8 yards
so, it has travelled 15 + 15 = 30 yards before hitting the ground
2nd kick is given by the equation
y (x) = -0.032x(x - 50)

we know that maximum height occurs is given as


and maximum height is

y = 20
so kick 2 travels 25 + 25 = 50 yards before hitting the ground
first kick reached 8 yards and 2nd kick reached 20 yards
First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.
To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N
Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.
Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.
Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N
You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc