answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sasho [114]
2 years ago
10

Un tren parte de la ciudad A, a las 8 h. con una velocidad de 50 km/h, para llegar a la ciudad B a las 10 h. Allí permanece dura

nte media hora y reanuda la marcha a 80 km/h hasta que llega a la ciudad C una hora más tarde. Calcula la distancia que hay entre las distintas ciudades y la hora de llegada
Physics
1 answer:
amm18122 years ago
8 0

Answer:

AB = 100 km; BC = 80 km; AC = 180 km

Arrival time = 11:30

Explanation:

1. Distance from A to B

(a) Travel time

Time = 10:00 - 8:00 = 2.00 h

(b) Distance

Distance = speed × time = 50 km/h × 2.00 h = 100 km

2. Distance from B to C

Distance = 80 km/h × 1 h = 80 km

3. Distances

AB = 100 km

BC =    80 km

AC =  180 km

4. Arrival time

Start from A       = 08:00

Travel time to B =   2:00

Arrive at B          =  10:00

Wait time at B    =    0:30

Start from B        =  10:30

Travel time to C  =   1:00

Arrive at C            = 11:30

 

You might be interested in
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
1 year ago
Assume the radius of an atom, which can be represented as a hard sphere, is r = 1.95 Å. The atom is placed in a (a) simple cubic
Nuetrik [128]

Answer:

(a) A = 3.90 \AA

(b) A = 4.50 \AA

(c) A = 5.51 \AA

(d) A = 9.02 \AA

Solution:

As per the question:

Radius of atom, r = 1.95 \AA = 1.95\times 10^{- 10} m

Now,

(a) For a simple cubic lattice, lattice constant A:

A = 2r

A = 2\times 1.95 = 3.90 \AA

(b) For body centered cubic lattice:

A = \frac{4}{\sqrt{3}}r

A = \frac{4}{\sqrt{3}}\times 1.95 = 4.50 \AA

(c) For face centered cubic lattice:

A = 2{\sqrt{2}}r

A = 2{\sqrt{2}}\times 1.95 = 5.51 \AA

(d) For diamond lattice:

A = 2\times \frac{4}{\sqrt{3}}r

A = 2\times \frac{4}{\sqrt{3}}\times 1.95 = 9.02 \AA

6 0
1 year ago
A rigid, 2.50 L bottle contains 0.458 mol He. The pressure of the gas inside the bottle is 1.83 atm. If 0.713 mol Ar is added to
stellarik [79]
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.

The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.

You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
 
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):

PiVi=niRTi --> Ti=(PiVi)/(niR)
 
PfVf=nfRTf --> Tf=(PfVf)/(nfR)

ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)

In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
8 0
2 years ago
Read 2 more answers
A piston–cylinder device contains 0.15 kg of air initially at 2 MPa and 350°C. The air is first expanded isothermally to 500 kPa
Paraphin [41]

Answer:

<h2>jeusYgwyhedswusjsj</h2>

Explanation:

sjauajshsu<em>y</em><em>e</em><em>u</em><em>e</em><em>u</em><em>e</em><em>h</em><em>e</em><em>y</em><em>s</em><em>b</em><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em />

3 0
2 years ago
An inventive child named Nick wants to reach an apple in a tree without climbing the tree. Sitting in a chair connected to a rop
Oduvanchick [21]

UHHH WHAT? I DONT GET THAT AT ALLOW

5 0
2 years ago
Other questions:
  • A certain liquid has a density of 2.67 g/cm3. 1340 g of this liquid would occupy a volume of ________ l.
    8·2 answers
  • Mike recently purchased an optical telescope. Identify the part of the electromagnetic spectrum that is closest to the frequency
    7·2 answers
  • 2. Particle motion in a longitudinal wave is ______.
    14·1 answer
  • Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater.
    10·1 answer
  • A system of two paint buckets connected by a lightweight rope is released from rest with the 12.0-kg bucket 2.00 m above the flo
    13·1 answer
  • Two identical closely spaced circular disks form a parallel-plate capacitor. Transferring 2.1×109 electrons from one disk to the
    7·2 answers
  • Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water wit
    8·1 answer
  • When a 0.058 kg tennis ball is served, it accelerates from rest to a speed of 45.0 m/s. The impact with the racket gives the bal
    14·1 answer
  • You have a resistor and a capacitor of unknown values. First, you charge the capacitor and discharge it through the resistor. By
    14·1 answer
  • A student measured the density of Galena to be 7.9g/cm3 however the known density of Galena is 7.6g/cm3 . Calculate the percent
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!