Answer:

Explanation: Angular velocity is the number of revolutions made per unit time.
We convert the number of revolutions to radians and the time given in seconds to minutes,
Given;

Also,
60s = 1 min
hence

We now divide the number of revolution in radians by the time in minutes.

Answer:
30298514.82 m/s
Explanation:
M = Mass of star = 2×10³ kg
r = Radius of star = 5×10³ m
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The object would be moving at a velocity of 30298514.82 m/s
Well this question looks like it makes some assumptions. So assuming that both cars have the same mass and experience the same wind resistance regardless of speed and same internal frictions, then we could say "The car that finishes last has the lowest power". The reason is that for a given race the cars must overcome losses associated with motion. Since they all travel the same distance, the amount of work will be the same for both. This is because work is force times distance. If the force applied is the same in both cases (identical cars with constant wind resistance) and the distance is the same for both (a fair race track) then W=F·d will be the same.
Power, however, is the work done divided by the time over which it is done. So for a slower car, time t will be larger. The power ratio W/t will be smaller for the longer time (slower car).