Answer:
Part a)
the tension force is equal to the weight of the crate
Part b)
tension force is more than the weight of the crate while accelerating upwards
tension force is less than the weight of crate if it is accelerating downwards
Explanation:
Part a)
When large crate is suspended at rest or moving with uniform speed then it is given as

here since speed is constant or it is at rest
so we will have


so the tension force is equal to the weight of the crate
Part b)
Now let say the crate is accelerating upwards
now we can say


so tension force is more than the weight of the crate
Now if the crate is accelerating downwards


so tension force is less than the weight of crate if it is accelerating downwards
An activity that is relatively short in time <10 seconds and has few repetitions predominantly uses the ATP/PC energy system. The cellular respiration procedure that changes food energy into ATP which is a form of energy is largely reliant on oxygen obtainability. During exercise the source and request of oxygen obtainable to muscle is unnatural by period and strength and by the individual’s cardiorespiratory suitability level.
Steps of the ATP-PC system:
1. Primarily, ATP kept in the myosin cross-bridges which is microscopic contractile parts of muscle is broken down to issue energy for muscle shrinkage. This action consents the by-products of ATP breakdown which are the adenosine diphosphate and one single phosphate all on its own.
2. Phosphocreatine is then broken down by the enzyme creatine kinase into creatine and phosphate.
3. The energy free in the breakdown of PC permits ADP and Pi to rejoin creating more ATP. This newly made ATP can now be broken down to issue energy to fuel activity.
The answer is B: energy is transferred, but it can go to the products or the reactants.
Explanation:
The work done equals the change in energy.
W = ΔKE
W = 0 − ½mv²
W = -½ (0.270 kg) (-7.50 m/s)²
W = -7.59 J
Work is force times displacement.
W = Fd
-7.59 J = F (-0.150 m)
F = 50.6 N
Answer:

Explanation:
Since volume of all the liquid is always conserved
so here we know that




now we know that total surface area is given as


