answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
2 years ago
14

A 59.7 g piece of metal that had been submerged in boiling water was quickly transferred into 60.0 mL of water initially at 22.0

°C. The final temperature is 28.5°C. Use these data to determine the specific heat of the metal.
Physics
1 answer:
Anna007 [38]2 years ago
5 0

Answer:

s = 382.45 J/kg C

Explanation:

Here by energy equivalence we can say that energy given by the metal piece is same as the energy absorbed by the water

so here we have

m_1s_2\Delta T_1 = m_2s_2 \Delta T_2

here we know that

m_1 = 60 mL = 0.060 kg

s_1 = 4186 J/kg C

\Delta T_1 = 28.5 - 22

m_2 = 59.7 g = 0.0597 kg

\Delta T_2 = 100 - 28.5

0.060(4186)(28.5 - 22) = (0.0597)(s)(100 - 28.5)

1632.54 = 4.27 s

s = 382.45 J/kg C

You might be interested in
You testify as an expert witness in a case involving an accident in which car A slid into the rear of car B, which was stopped a
bekas [8.4K]

Answer:

A) 12.08 m/s

B) 19.39 m/s

Explanation:

A) Down the hill, we will apply Newton’s second law of motion in the downward direction to get:

mg(sinθ) – F_k = ma

Where; F_k is frictional force due to kinetic friction given by the formula;

F_k = (μ_k) × F_n

F_n is normal force given by mgcosθ

Thus;

F_k = μ_k(mg cosθ)

We now have;

mg(sinθ) – μ_k(mg cosθ) = ma

Dividing through by m to get;

g(sinθ) – μ_k(g cosθ) = a

a = 9.8(sin 12.03) - 0.6(9.8 × cos 12.03)

a = -3.71 m/s²

We are told that distance d = 24.0 m and v_o = 18 m/s

Using newton's 3rd equation of motion, we have;

v = √(v_o² + 2ad)

v = √(18² + (2 × -3.71 × 24))

v = 12.08 m/s

B) Now, μ_k = 0.10

Thus;

a = 9.8(sin 12.03) - 0.1(9.8 × cos 12.03)

a = 1.08 m/s²

Using newton's 3rd equation of motion, we have;

v = √(v_o + 2ad)

v = √(18² + (2 × 1.08 × 24))

v = 19.39 m/s

6 0
2 years ago
With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward. If the force exerted on the book by
Stells [14]
For Newton's second law, the resultant of the forces acting on the book is equal to the product between the mass of the book and its acceleration:
\sum F = ma (1)

There are only two forces acting on the book:
- its weight, directed downward: mg
- the force exerted by the hand on the book, of 20 N, directed upward

so, equation (1) becomes
mg - F = ma
from which we can calculate the book's acceleration, a:
a= g -  \frac{F}{m}= 9.81 m/s^2 - \frac{20 N}{3 kg}=3.14 m/s^2
7 0
2 years ago
Read 2 more answers
Two long straight wires enter a room through a window. One carries a current of 2.9A into the room, while the other carries a cu
Degger [83]

Answer and Explanation:

curents i = 2.9 A

           i ' = 4.4 A

the magnitude (in T.m) of the path integral of B.dl around the window frame = μo * current enclosed

          = μo* ( i '- i )

Since from Ampere's law

where μ o = permeability of free space = 4π * 10 ^-7 H / m

plug the values we get the magnitude (in T.m) of the path integral of B.dl = ( 4π*10^-7 ) (2.9+4.4)

                                 = 1.884 * 10^-6 Tm

4 0
2 years ago
Heat engines were first envisioned and built during the industrial revolution. Explain the thermodynamics of a heat engine comme
Artyom0805 [142]

Heat engines were developed during industrial revolution.

Generally a heat engine contains three parts i.e source, sink and working substance.

The source of a heat engine is present at a higher temperature as compared to the sink. Due to the temperature difference, the heat will flow from source to sink through working substance.

Let us consider  T_{1}\ and\ T_{2} are the temperature of source and sink.

As the source is at higher temperature as compared to sink, heat will flow from source to sink.

Let\ Q_{1}\ and\ Q_{2} are the heat provided by source and heat rejected to sink.

Hence, the work done by the working substance will be -

                                                W\ =\ Q_{1}-Q_{2}

The efficiency of a heat engine is defined as the ratio of output to the input energy.

Here output = workdone [W]

Hence, the efficiency of a heat engine is calculated as -

                     Efficiency\ [\eta]=\frac{W}{Q_{1}}

                                        \eta\ =\frac{Q_{1}- Q_{2}} {Q_{1}}

                                               =\ 1-\frac{Q_{2}} {Q_{1}}

This is the expression for the efficiency of heat engine.

Here, all the heat absorbed by the working substance can not be converted to desired output. The efficiency of a heat engine can not be 100 percent. Some amount of heat is lost in the form of sound and heat due to the friction which is produced due to the relative motion between various parts of the machine.

6 0
2 years ago
Read 2 more answers
A measuring cylinder contains 60cm3 of oil at 0 celcius. When a piece of ice was roped into the cylinder it sank completely in o
mariarad [96]

Answer:

S_i=\frac{9}{10} =0.9

Explanation:

Given:

  • volume of oil in the cylinder, V_o=60\ cm^2
  • volume of the oil level when the ice is immersed, V=90\ cm^3
  • the volume level of oil when the ice melted, V'=87\ cm^3

<u>Now, therefore the volume of ice:</u>

V_i=V-V_o

V_i=90-60

V_i=30\ cm^3

<u>Now the volume of water:</u>

V_w=V'-V_o

V_w=87-60

V_w=27\ cm^3

As we know that the relative density is the ratio of density of the substance to the density of water.

<u>So, the relative density of ice:</u>

S_i=\frac{\rho_i}{\rho_w} .....................(1)

as we know that density is given as:

\rm \rho=\frac{mass}{volume}

now eq. (1)

S_i=\frac{m}{V_{i}}\div  \frac{m}{V_w}

where, m = mass of the water or the ice which remains constant in any phase

S_i=\frac{V_w}{V_i}

S_i=\frac{27}{30}

S_i=\frac{9}{10} =0.9

7 0
2 years ago
Other questions:
  • A robot probe drops a camera off the rim of a 239 m high cliff on mars, where the free-fall acceleration is −3.7 m/s2 .
    13·1 answer
  • A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
    12·2 answers
  • A plane traveled west for 4.0 hours and covered a distance of 4,400 kilometers. What was its velocity? 18,000 km/hr 1,800 km/hr,
    12·2 answers
  • While camping in Denali National Park in Alaska, a wise camper hangs his pack of food from a rope tied between two trees, to kee
    9·1 answer
  • A 6-ft-long fishing rod AB is securely anchored in the sand of a beach. After a fish takes the bait, the resulting force in the
    7·1 answer
  • A particle leaves the origin with an initial velocity v → = (3.00iˆ) m/s and a constant acceleration a → = (−1.00iˆ − 0.500jˆ) m
    10·1 answer
  • A proposed space elevator would consist of a cable stretching from the earth's surface to a satellite, orbiting far in space, th
    6·1 answer
  • Reginald slipped and broke his leg in his kitchen when he ran inside to grab a cookie. His mother had just mopped the floor. Wha
    15·1 answer
  • Derive an expression for the acceleration of the car. Express your answer in terms of D and vt Determine the time at which the s
    10·1 answer
  • Kevin is a black high school senior. While walking home from a sporting event at school, he sees a police car and decides to tak
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!