answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
2 years ago
13

A robot probe drops a camera off the rim of a 239 m high cliff on mars, where the free-fall acceleration is −3.7 m/s2 .

Physics
1 answer:
ira [324]2 years ago
3 0
<span>a. We can find the velocity when the camera hits the ground. v^2 = (v0)^2 + 2ay = 0 + 2ay v = sqrt{ 2ay } v = sqrt{ (2)(3.7 m/s^2)(239 m) } v = 42 m/s The camera hits the ground with a velocity of 42 m/s b. We can find the time it takes for the camera to hit the ground. y = (1/2) a t^2 t^2 = 2y / a t = sqrt{ 2y / a } t = sqrt{ (2)(239 m) / 3.7 m/s^2 } t = 11.4 seconds
       
It takes 11.4 seconds for the camera to hit the ground.</span>
You might be interested in
Frances drew a diagram to show electromagnetic induction.
kari74 [83]

Answer:

The answer is B) Magnetic field

Explanation:

I chose it and I got it right

8 0
2 years ago
Read 2 more answers
A crane uses a block and tackle to lift a 2200N flagstone to a height of 25m
Cloud [144]

Remember the headline:  ENERGY IS NEVER CREATED OR DESTROYED

The amount of energy before and after are always equal.  All we ever do with energy is move it around from one place to another.

a). A crane can't create energy.  Lifting the same rock in 20 different ways always takes the <u><em>same amount of work</em></u>.  It doesn't matter whether one person picks the rock straight up, or 50 people get around it and lift it, or roll it up a ramp, or lift it with 16 pulleys and a mile of rope, or use a giant steam crane.

You want to lift a 2200N weight up 25m, you're going to have to supply

(2200N) x (25m) = <em>55,000 Joules</em> of work.

c). YOU put out 55,000 Joules of energy.  It had to GO someplace. Where is it now ? ===>  It's the potential energy the rock has now, from being 25m higher than it was before.  That <em>55,000 Joules</em> is NOW the potential energy  of the rock.

No energy was created or destroyed.  It just got moved around.  

55,000 Joules of energy began as nuclear energy in the core of the sun. Solar radiation carried it to the Earth. Plants absorbed it, and stored it as chemical energy.  You ... or a cow that you ate later ... ate the plants and took the chemical energy.  One way or the other, the chemical energy got stored in your blood and fat.  When you needed to put it out somewhere, you moved it into your muscles, and they converted it into mechanical energy.  Then you used the mechanical energy to exert forces.  Today, you used the original 55,000 joules to lift the flagstone, and NOW that energy is in the flagstone, 25 meters up off the ground !

6 0
2 years ago
Imagine you derive the following expression by analyzing the physics of a particular system: M= (mv2r)(mGr2). Simplify the expre
alex41 [277]

Answer:

The simplified expression is M  =  \frac{v^2 r}{G}

Explanation:

From the question we are told that  

     M  = \frac{ \frac{m v^2}{r} }{\frac{ mG}{r^2 } }

So simplifying we have

    M  =    \frac{m v^2}{r} *  \frac{r^2 }{ mG }

    M  =  \frac{v^2 r}{G}

Thus the simplified formula is M  =  \frac{v^2 r}{G}

3 0
2 years ago
A spacecraft of the Trade Federation flies past the planet Coruscant at a speed of 0.610 c. A scientist on Coruscant measures th
mamaluj [8]

Answer:

the length of the now stationary spacecraft = 89.65m

Explanation:

In contraction equation, Length contraction L is the shortening of the measured length of an object moving relative to the observer’s frame.

Thus, it has a formula;

L = L_o(√(1 - (v²/c²))

Where in this question;

L = 71m and v = 0.610 c

Thus;

71 = L_o (√(1 - ((0.61c)²/c²))

c² will cancel out to give;

71 = L_o (√(1 - 0.61²)

71 = L_o (√(1 - 0.61²)

71 = 0.792L_o

L_o = 71/0.792

L_o = 89.65m

6 0
2 years ago
Fill in the blanks to complete each statement about weathering. Weathering is the breakdown of rocks into smaller particles call
nevsk [136]

Answer:

sediments

Explanation:

Weathering is the breakdown of rocks into smaller particles called:

                 sediments

Weathering is the physical disintegration and chemical decay of rocks into smaller fragments to produce sediments. The product of rock weathering is basically sediments. Some of the sediments can be transformed to form soils when they combine with organic matter, water and air.

Physical weathering is when rocks are physically broken into smaller pieces, but the minerals in  the rock remain the same.

             Physical weathering

Physical weathering is the disintegration of rocks into smaller bits without altering the chemical make up of the minerals. The goal of physical weathering is to expose rock surface to action of chemical weathering.

When a rock is broken down in a way that changes the mineral composition, it is called  chemical weathering

          chemical weathering

Chemical weathering is the decay of rocks by altering the minerals in a rock.

Hope this Helps! c:

8 1
2 years ago
Read 3 more answers
Other questions:
  • What is the value of the composite constant (gmer2e), to be multiplied by the mass of the object mo in the equation above? expre
    9·2 answers
  • A carnot cycle engine operates between a low temperature reservoir at 20°c and a high temperature reservoir at 800°c. if the eng
    15·1 answer
  • One kind of slingshot consists of a pocket that holds a pebble and is whirled on a circle of radius r. The pebble is released fr
    14·1 answer
  • A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b
    8·1 answer
  • A solid plate, with a thickness of 15 cm and a thermal conductivity of 80 W/m·K, is being cooled at the upper surface by air. Th
    5·1 answer
  • You go to an amusement park with your friend Betty, who wants to ride the 80-m-diameter Ferris wheel. She starts the ride at the
    10·1 answer
  • Reginald slipped and broke his leg in his kitchen when he ran inside to grab a cookie. His mother had just mopped the floor. Wha
    15·1 answer
  • Energy conservation with conservative forces: Two identical balls are thrown directly upward, ball A at speed v and ball B at sp
    7·1 answer
  • Scotesia swims from the north end to the south end of a 50.0 m pool in 20.0 s. As she begins to make the return trip , Sean, who
    5·1 answer
  • Two students are discussing how the speed of the car compares to the speed of the truck when both vehicles are in front of the h
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!