Answer:
A.)1.52cm
B.)1.18cm
Explanation:
angular speed of 120 rev/min.
cross sectional area=0.14cm²
mass=12kg
F=120±12ω²r
=120±12(120×2π/60)^2 ×0.50
=828N or 1068N
To calculate the elongation of the wire for lowest and highest point
δ=F/A
= 1068/0.5
δ=2136MPa
'E' which is the modulus of elasticity for alluminium is 70000MPa
δ=ξl=φl/E =2136×50/70000=1.52cm
δ=F/A=828/0.5
=1656MPa
δ=ξl=φl/E
=1656×50/70000=1.18cm

Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
Answer:
The temperature of the cooler substance was close to the room temperature. Therefore, the system experienced less change
Explanation:
Generally, in a closed system containing two bodies at different temperatures, there is a flow of heat energy from the body at a higher temperature to the body at a lower temperature. The effect is more significant when there is a large temperature difference between the bodies. However, if the temperature difference is small or insignificant, the change will be less.
Answer:
1027.2 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 32.2 ft/s


The height the tomato would fall is 450+577.2 = 1027.2 m