answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ann [662]
2 years ago
7

A coil of wire containing N turns is in an external magnetic field that is perpendicular to the plane of the coil and it steadil

y changing. Under these circumstances, an emf ε is induced in the coil. If the rate of change of the magnetic field and the number of turns in the coil are now doubled (but nothing else changes), what will be the induced emf in the coil?
Physics
1 answer:
krok68 [10]2 years ago
8 0

Answer:

The Resultant Induced Emf in coil is 4∈.

Explanation:

Given that,

A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.

To find :-

find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).

So,

   Emf induced in the coil represented by formula

                          ∈  =   -N\frac{d\phi}{dt}                                  ...................(1)

                                          Where:

                                                    .   \phi = BAcos\theta     { B is magnetic field }

                                                                                 {A is cross-sectional area}

                                                    .  N = No. of turns in coil.

                                                    .  \frac{d\phi}{dt} = Rate change of induced Emf.

Here,

Considering the case :-

                                    N1 = 2N  &      \frac{d\phi1}{dt} = 2\frac{d\phi}{dt}

Putting these value in the equation (1) and finding the  new emf induced (∈1)

                           

                                      ∈1 =-N1\times\frac{d\phi1}{dt}

                                      ∈1 =-2N\times2\frac{d\phi}{dt}

                                       ∈1 =4 [-N\times\frac{d\phi}{dt}]

                                        ∈1 = 4∈             ...............{from Equation (1)}      

Hence,

The Resultant Induced Emf in coil is 4∈.        

                           

You might be interested in
When a particle is a distance r from the origin, its potential energy function is given by the equation U(r)=kr, where k is a co
Reika [66]

Answer

The answer and procedures of the exercise are attached in the following archives.

Step-by-step explanation:

You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.  

5 0
2 years ago
The center of the Hubble space telescope is 6940 km from Earth’s center. If the gravitational force between Earth and the telesc
Luda [366]
The answer is 11,121 kg
5 0
1 year ago
Read 2 more answers
When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
MA_775_DIABLO [31]

Answer:

If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

Explanation:

R₁ = Resistance of first resistor

R₂ = Resistance of second resistor

V = Voltage of battery = 12 V

I = Current = 0.33 A (series)

I = Current = 1.6 A (parallel)

In series

\text{Equivalent resistance}=R_{eq}=R_1+R_2\\\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{0.33}\\\Rightarrow R_1+R_2=36.36\\ Also\ R_1=36.36-R_2

In parallel

\text{Equivalent resistance}=\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}\\\Rightarrow {R_{eq}=\frac{R_1R_2}{R_1+R_2}

\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{1.6}\\\Rightarrow \frac{R_1R_2}{R_1+R_2}=7.5\\\Rightarrow \frac{R_1R_2}{36.36}=7.5\\\Rightarrow R_1R_2=272.72\\\Rightarrow(36.36-R_2)R_2=272.72\\\Rightarrow R_2^2-36.36R_2+272.72=0

Solving the above quadratic equation

\Rightarrow R_2=\frac{36.36\pm \sqrt{36.36^2-4\times 272.72}}{2}

\Rightarrow R_2=25.78\ or\ 10.57\\ If\ R_2=25.78\ then\ R_1=36.36-25.78=10.58\ \Omega\\ If\ R_2=10.57\ then\ R_1=36.36-10.57=25.79\Omega

∴ If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

6 0
2 years ago
A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm.
mote1985 [20]

Answer:

a) When its length is 23 cm, the elastic potential energy of the spring is

0.18 J

b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J

Explanation:

Hi there!

a) The elastic potential energy (EPE) is calculated using the following equation:

EPE = 1/2 · k · x²

Where:

k = spring constant.

x = stretched lenght.

Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).

First, let´s convert the spring constant units into N/m:

4 N/cm · 100 cm/m = 400 N/m

EPE = 1/2 · 400 N/m · (0.03 m)²

EPE = 0.18 J

When its length is 23 cm, the elastic potential energy of the spring is 0.18 J

b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:

EPE = 1/2 · 400 N/m · (0.06 m)²

EPE = 0.72 J

When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J

7 0
2 years ago
1. A 3.0 kg mass is tied to a rope and swung in a horizontal circle. If the velocity of the mass is 4.0 ms and
saul85 [17]

10.67m/s²

32N

Explanation:

Given parameters:

Mass of the body = 3kg

velocity of the mass = 4m/s

radius of circle = 0.75m

Unknown:

centripetal acceleration = ?

centripetal force = ?

Solution:

The centripetal force is the force that keeps a radial body in its circular motion. It is directed inward:

   Centripetal acceleration  = \frac{v^{2} }{r}

   v is the velocity of the body

    r is the radius of the circle

  putting in the parameters:

   Centripetal acceleration = \frac{4^{2} }{0.75}

    Centripetal acceleration = 10.67m/s²

Centripetal force = m  \frac{v^{2} }{r}

          m is the mass

 Centripetal force = mass x centripetal acceleration

                              = 3 x 10.67

                              = 32N

learn more:

Acceleration brainly.com/question/3820012

#learnwithBrainly

4 0
2 years ago
Other questions:
  • One beam of electrons moves at right angles to a magnetic field. the force on these electrons is 4.9 x 10-14 newtons. a second b
    13·1 answer
  • What do wind turbines, hydroelectric dams, and ethanol plants have in common?
    7·2 answers
  • A constant power is supplied to a rotating disc .the relationship of angular velocity of disc and number of rotations made by th
    5·1 answer
  • In the absence of air resistance, at what other angle will a thrown ball go the same distance as one thrown at an angle of 75 de
    13·1 answer
  • A child pulls a wagon at a constant velocity along a level sidewalk. The child does this by applying a 22 newton force to the wa
    8·1 answer
  • You discover a Cepheid variable star with a 30 day period in the Milky Way. Through careful monitoring for a few years with the
    14·1 answer
  • Grace, Erin, and Tony are on a seesaw. Grace has a mass of 45kg and is seated 0.7m to the left of the fulcrum. Nicole has a mass
    13·1 answer
  • If you're swimming underwater and knock two rocks together, you will hear a very loud noise. But if your friend above the water
    7·1 answer
  • Chef Andy tosses an orange in the air, then catches it again at the same height. The orange is in the air for 0.75\,\text s0.75s
    7·1 answer
  • A 2.70 kg cat is sitting on a windowsill. The cat is sleeping peacefully until a dog barks at him. Startled, the cat falls from
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!