answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mafiozo [28]
2 years ago
8

What’s 2.3 miles into kilometers

Physics
1 answer:
True [87]2 years ago
8 0
3.701 kilometers hope that helps
You might be interested in
There are two forces on the 2 kg box in the overhead view of the following figure, but only one is shown. For F1=20N, a= 12 m/s2
maw [93]

Answer:

second force = 32.784

Magnitude =\sqrt{32.784

θ = -90°

Explanation:

a)

Fnet = ma

F1 + F2 = ma

20N + F2 = 2(12 × cos30° + 12 ×sin30°)

F2 = 2 × 12 ( sin 30° + cos 30°)

    = 24 × ( 1 + √3 )÷ 2

  =12 (1 +√3 )

  = 32.784

b) \sqrt{12(1 +\sqrt{3}}

= \sqrt{12 ( 1+ 1.732)}

= \sqrt{12 (2.732)}

= \sqrt{32.784}  

c)

θ = 30° + 180°

θ = 210°

210° - 300°

θ = -90°

8 0
2 years ago
A car traveling at speed v takes distance d to stop after the brakes are applied. What is the stopping distance if the car is in
Vikki [24]

49d

<h3>Further explanation</h3>

This case is about uniformly accelerated motion.

<u>Given:</u>

The initial speed was v takes distance d to stop after the brakes are applied.

<u>Question:</u>

What is the stopping distance if the car is initially traveling at speed 7.0v?

Assume that the acceleration due to the braking is the same in both cases. Express your answer using two significant figures.

<u>The Process:</u>

The list of variables to be considered is as follows.

  • \boxed{u \ or \ v_i = initial \ velocity}
  • \boxed{u \ or \ v_t \ or \ v_i = terminal \ or \ final \ velocity}
  • \boxed{a = acceleration \ (constant)}
  • \boxed{d = distance \ travelled}

The formula we follow for this problem are as follows:

\boxed{ \ v^2 = u^2 + 2ad \ }

  • a = acceleration (in m/s²)
  • u = initial velocity  
  • v = final velocity
  • d = distance travelled

Step-1

We substitute v as the initial speed, distance of d, and zero for final speed into the formula.

\boxed{ \ 0 = v^2 + 2ad \ }

\boxed{ \ v^2 = -2ad \ }

Both sides are divided by -2d, we get \boxed{ \ a = \Big( -\frac{v^2}{2d} \Big) \ . . . \ (Equation-1) \ }

Step-2

We substitute 7.0v as the initial speed, zero for final speed, and Equation-1 into the formula.

\boxed{ \ 0 = (7.0v)^2 + 2 \Big( -\frac{v^2}{2d} \Big)d' \ }

Here d' is the stopping distance that we want to look for.

\boxed{ \ 2 \Big( \frac{v^2}{2d} \Big)d' = (7.0v)^2 \ }

We crossed out 2 in above and below.

\boxed{ \ \Big( \frac{v^2}{d} \Big)d' = 49.0v^2 \ }

We multiply both sides by d.

\boxed{ \ v^2 d' = 49.0v^2 d \ }

We crossed out v^2 on both sides.

\boxed{\boxed{ \ d' = 49.0d \ }}

Hence, by using two significant figures, the stopping distance if the car is initially traveling at speed 7.0v is 49d.

<h3>Learn more</h3>
  1. Determine the acceleration of the stuffed bear brainly.com/question/6268248
  2. Particle's speed and direction of motion brainly.com/question/2814900
  3. About the projectile motion brainly.com/question/2746519

Keywords: a car traveling at speed v, takes distance d to stop after the brakes are applied, the stopping distance, if the car is initially traveling at speed 7.0v, the acceleration due to the braking is the same, two significant figures.

6 0
2 years ago
Read 2 more answers
A small cylinder rests on a circular turntable that is rotating clockwise at a constant speed. Which set of vectors gives the di
I am Lyosha [343]

The question is missing the diagram. Also, the choices must have pictorial representation. So, I have attached the missing diagram and the pictorial representation of the vectors.

Answer:

The correct representation is attached below. Force and acceleration will be towards the center of rotation while the velocity will be along the tangent to the circular motion. <u>Option (D).</u>

Explanation:

From the figure, we can conclude the following points:

1. The cylinder is under a uniform circular motion as the circular table is moving at constant speed.

2. For a circular motion, velocity acts along the tangent to the circular path.

3. For a circular motion, centripetal force acts on the body that causes it move around a circular path.

4 The direction of the centripetal force is radially inward towards the center of rotation.

5. The centripetal force causes a centripetal acceleration acting on the body.

6. From Newton's second law, the net acceleration of a body is in the same direction as that of the net force acting on it. So, centripetal acceleration also acts in the radially inward direction.

Therefore, from the above conclusions, it is clear that velocity will act in the horizontal direction at the given instance of time and force and acceleration will act vertically down for the given instance.

This is shown in the picture below. The option (D).

4 0
2 years ago
An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined
MrRa [10]

Incomplete question as the car's  speed is missing.I have assumed car's  speed as 6.0m/s.The complete question is here

An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined weight of the car and riders is 6.00 kN, and the radius of the circle is 15.0 m. At the top of the circle, (a) what is the force FB on the car from the boom (using the minus sign for downward direction) if the car's speed is v 6.0m/s

Answer:

F_{B}=-5755N

Explanation:

Set up force equation

∑F=ma

∑F=W+FB

\frac{mv^{2} }{R}=W+F_{B}\\  F_{B}=\frac{mv^{2} }{R}-W\\F_{B}=\frac{(W/g)v^{2} }{R}-W\\F_{B}=\frac{(6000N/9.8m/s^{2} )(6m/s)^{2} }{(15m)}-6000N\\F_{B}=-5755N

The minus sign for downward direction

6 0
2 years ago
La altura de un tornillo de banco respecto a la superficie es de 80 cm expresar dicha medida en pies..
Andrej [43]

Answer:

this measurement if feet is: 2.624672 ft

Explanation:

Notice that 80 cm can be expressed as 0.8 meters, and In order to convert from meters to feet, one needs to multiply the meter measurement times 3.28084. Therefore:

0.80 m can be written in feet as: 0.80 * 3.28084 feet = 2.624672 feet

3 0
2 years ago
Other questions:
  • A hiker walks 200m west and then walks 100m north. What is the magnitude and direction of her resulting displacement?
    7·2 answers
  • Which voice can produce a pitch that has a speed of 343 m/s and a wavelength of 0.68 m? Check all that apply.
    12·2 answers
  • Geoff counts the number of oscillations of a simple pendulum at a location where the acceleration due to gravity is 9.80 m/s2, a
    9·1 answer
  • How does Coulomb's Law and electric charge cause your hair to stand on edge when it is really dry outside and you walk across th
    14·1 answer
  • An auto moves 10 meters in the first second of travel, 15 more meters in the next second, and 20 more meters during the third se
    12·1 answer
  • To measure moderately low pressures, oil with a density of 9.0 x 102 kg/m3 is used in place of mercury in a barometer. A change
    14·1 answer
  • Astronauts in the International Space Station must work out every day to counteract the effects of weightlessness. Researchers h
    15·1 answer
  • Three magnets are placed on a plastic stick as shown in the image. Explain how the magnets need to be rearranged so that they st
    15·2 answers
  • Guadalupe has a motorized globe on her desk that has a 0.16 m radius. She turns on the 4.25-watt motor and the globe begins to s
    12·1 answer
  • Rita has two small containers, one holding a liquid and one holding a gas. Rita transfers the substances to two larger container
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!