Answer:
Explanation:
4μC will attract -9μC towards the centre and -5μC will repel it away from the centre. Both these forces are opposite to each other.
Force due to 4μC on -9μC towards the centre
= k x Q₁ Q₂/R² = 9 X 10⁹ X 4 X 10⁻⁶ X 9 X 10⁻⁶ / (1.2)² = 225 X 10⁻³ N/C
Force due to -5μC on -9μC away from the centre
= 9 x 10⁹ x 5 x 10⁻⁶x 9 x 10⁻⁶/( 0.8)² = 632.8 x 10⁻³ .N/C
Ner field =407.8 N/C.
Answer:
No, both the thermometers will give the different reading.
Explanation:
Given,
- Both thermometer has same ice point =

- Both thermometer has same steam point =

- Distance between the ice point and steam point in both the thermometer is same of 100 division,
All the data given in both the thermometers are same, but the material in the thermometer is different due to this the reading at 60^o C will differ in both the thermometer. Because the reading on both the thermometer is depended upon the thermal expansion of the material inside it, but both the materials are different. Due to this the rise of fluid in the thermometer, i,e,. the volume of the fluid material in the thermometer will depend upon the thermal expansion. Hence both the material alcohol and mercury have the different thermal expansion, therefore the rise of the fluid in the thermometer also differ in both the thermometer.
Answer:

Explanation:
Electric field strength= Force/unit charge
E= (kQq/r²)/q ₓ r
where r is the unit vector in the direction of unit charge
E= 
Answer:
K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x
Explanation:
To find the variation of kinetic energy, let's use the work energy theorem
W = ΔK
∫ F .dx = K -K₀
If the body starts from rest K₀ = 0
∫ F dx cos θ = K
Since the force and displacement are in the same direction, the angle is zero, so the cosine is 1
we substitute and integrate
α ∫ x³ dx + β ∫ dx = K
α x⁴ / 4 + β x / 1 = K
we evaluate from the lower limit F = 0 to the upper limit F
α (x⁴ / 4 -0) + β (x -0) = K
K = αX⁴ / 4 + β x
K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x
in order to finish the calculation we must know the displacement