answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
2 years ago
12

Evaluate the final kinetic energy of the supply spacecraft for the actual tractor beam force, F(x)=αx3+βF(x)=αx3+β.

Physics
1 answer:
Elan Coil [88]2 years ago
8 0

Answer:

K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x

Explanation:

To find the variation of kinetic energy, let's use the work energy theorem

            W = ΔK

           ∫ F .dx = K -K₀

If the body starts from rest K₀ = 0

           ∫ F dx cos θ = K

Since the force and displacement are in the same direction, the angle is zero, so the cosine is 1

we substitute  and integrate

          α ∫ x³ dx + β ∫ dx = K

          α x⁴ / 4 + β x / 1 = K

we evaluate from the lower limit F = 0 to the upper limit F

         α (x⁴ / 4 -0) + β (x -0) = K

        K = αX⁴ / 4 + β x

        K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x

in order to finish the calculation we must know the displacement

You might be interested in
The mass of Venus is 81.5% that of the earth, and its radius is 94.9% that of the earth. If a rock weighs 75.0 N on earth, compu
IgorLugansk [536]

Answer:

g = 0.905 gE

W  = 67.9 N

Explanation:

given data

mass of Venus mv =  81.5% = 0.815

radius Rv = 94.9% = 0.949

weighs W = 75.0 N

solution

we apply here acceleration due to gravity at earth surface that is

g = \frac{Gm}{R^2}   = 9.80 m/s²  ............1

so

g = \frac{G(0.815)}{0.949R^2}  

g = 0.905 gE

and

W = m gv

W = 0.905 m gE

W  = 0.905 × 75

W  = 67.9 N

7 0
2 years ago
A physics student shoves a 0.50-kg block from the bottom of a frictionless 30.0° inclined plane. The student performs 4.0 j of w
Musya8 [376]

Answer:1.63 m

Explanation:

Given

mass of block m=0.5 kg

inclination \theta =30^{\circ}

Amount of work done W=4 J

block slides a distance s along the Plane

Work done =change in Potential Energy

Increase in height of block is s\sin \theta

Change in Potential Energy =mg(\sin \theta -0)

\Delta P.E.=0.5\times 9.8\times s\sin 30

4=0.5\times 9.8\times s\sin 30

s=\frac{4}{2.45}      

s=1.63 m

5 0
2 years ago
B⃗ is kept constant but the coil is rotated so that the magnetic field, B⃗ , is now in the plane of the coil. How will the magne
s344n2d4d5 [400]

Answer:

<u>The flux decreases because the angle between B⃗ and the coil's axis changes.</u>

<u />

Explanation:

The flux through the coil is given by a dot product, between the magnetic field and the vector representing the area of the coil.

\Phi = \vec{B}\cdot \vec{S} = BScos(\theta)

The latter vector has direction perpendicular to the plane in which the area of the coil is, and magnitude equal to the area of the coil. As in the attached image, the vector S is the vector respresenting the area of the coil.

Therefore, the flux will be maximum when the vector S is in the same direction as B, and will be zero when they are perpendicular.

Now, if <em>the coil is rotated so that the magnetic field is in the plane of the coil </em>then, the vectors S and B are perpendicualr, and there will not be net magnetic flux, that is, the flux will decrease.

3 0
2 years ago
Read 2 more answers
A Porsche 944 Turbo has a rated engine power of 217 hp. 30% of the power is lost in the drive train, and 70% reaches the wheels.
shutvik [7]

Answer:

a = 6.53 m/s^2

v = 11.5689 m/s

Explanation:

Given data:

engine power is 217 hp

70 % power reached to wheel

total mass ( car + driver) is 1530 kg

from the data given

2/3 rd of weight is over the wheel

w = 2/3rd mg

maximum force

F = \mu W

we know that F = ma

ma =  \mu (2/3 mg)

a_{max} = 2/3(1.00) (9.8) = 6.53 m/s^2

the new power is p  = 70\% P_[max} = 0.7 P_{max}

P =f_{max} v

0.7P_{max} = ma_{max} v

solving for speed v

v =0.7 \times \frac{P_{max}}{ma_{max}}

v = 0.7 \frac{217 [\frac{746 w}{1 hp}]}{1500 \times 6.53}

v = 11.5689 m/s

7 0
2 years ago
A 3 kg rubber block is resting on wet concrete. The coefficient of static friction is 0.3. What is the minimum force that must b
mrs_skeptik [129]

Answer:

You would have to find the friction force of the rubber block which would be found with the equation of Normal force (mass*gravity) times cooeficient of friction which would give 8.82 N for the amount of friction and because you need more force than 8.82 N (assuming gravity is 9.8)

8 0
1 year ago
Other questions:
  • Water is projected from two rubber pipes at the same speed from one at an angle of 30°and from the other at 60°.why are the rang
    6·1 answer
  • Why are experiments often performed in laboratories?
    7·1 answer
  • In a ceiling fan, electrical energy, N, is transferred to another form, M. Energy transfers are never 100% efficient. Some of th
    15·2 answers
  • A shuttle on Earth has a mass of 4.5 E 5 kg. Compare its weight on Earth to its weight while in orbit at a height of 6.3 E 5 met
    10·1 answer
  • An ice sheet 5m thick covers a lake that is 20m deep. what is the temperature of the water at the bottom of the lake? explain yo
    12·2 answers
  • A car is driving around a banked curve, with the road surface at an angle of 10.0º. If the radius of curvature of the road is 30
    14·1 answer
  • The block brake consists of a pin-connected lever and friction block at B. The coefficient of static friction between the wheel
    7·2 answers
  • Many kinds of analysis in the physical sciences are helped by identifying quantities that are constant. It is usual to begin by
    5·1 answer
  • if a net horizontal force of 175 N is applied to a bike whos mass is 43 kg what acceleration is produced
    15·1 answer
  • Ever tried to stop a 150-pound (68 kg) cannonball fired towards you at 30 mph (48 km/hr.)? No, probably not. But you may have tr
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!