Answer:
Explanation:
Calories to be burnt = 3500 - 2500 = 1000 Cals .
Efficiency of conversion to mechanical work is 25 % .
Work needed to burn this much of Cals = 1000 x 100 / 25 = 4000 Cals.
4000 Cals = 4.2 x 4000 = 16800 J .
Work done in one jump = kinetic energy while jumping
= 1/2 m v²
= .5 x 70 x 3.3²
= 381.15 J .
Number of jumps required = 16800 / 381.15
= 44 .
Answer:
C. nuclear fusion, because the equation shows two hydrogen nuclei combining to form a helium nucleus
Explanation:
Nuclear reaction can either be; fission or fusion. Nuclear fission is the process by which a massive nucleus breaks in to two smaller nuclei of almost the same size with the release of high amount of energy. Nuclear fusion is the process by which two nuclei reacts, joins, to produce a massive nucleus (compared to the masses of the reacting elements) with the release of high amount of energy.
From the given equation, two hydrogen isotopes; deuterium and tritium reacts with each other to produce helium nucleus and a neutron.
This reaction is a nuclear fusion which produces a massive nuclei.
Answer:
Explanation:
The expression for the calculation of the enthalpy change of a process is shown below as:-
Where,
is the enthalpy change
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of water = 2.4 kg
Specific heat = 4.18 J/g°C
So,
Heat Supplied 
where 



The braking force is -400 N
Explanation:
We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

where in this problem, we have:
F is the force applied by the brakes
is the time interval
m = 13,000 kg is the mass of the ferry
u = 2.0 m/s is the initial velocity
v = 0 is the final velocity
And solving for F, we find the force applied by the brakes:

where the negative sign indicates that the direction is backward.
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
Answer:
0.647 nC
Explanation:
The force experienced by a charge due to the presence of an electric field is given by

where
q is the charge
E is the magnitude of the electric field
In this problem, each antenna is modelled as it was a single point charge, experiencing a force of

Therefore, if the electric field magnitude is

Then the charge on each antenna would be
