answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeTakaya
2 years ago
7

A test car and its driver, with a combined mass of 600 kg, are moving along a straight,horizontal track when a malfunction cause

s the tires to stop rotating. The car skids to a halt with constant acceleration, leaving skid marks on the road during the whole time it skids. Which two of the following measurements, taken together, would allow engineers to find the total mechanical energy dissipated during the skid?
A. The length of the skid marks
B. The contact area of each tire with the track.
C. The coefficent of static frction between the tires and the track.
D. The coefficent of static frction between the tires and the track.
Physics
1 answer:
ANEK [815]2 years ago
4 0

Answer:

The two of the following measurements, when taken together, would allow engineers to find the total mechanical energy dissipated during the skid

B. The contact area of each tire with the track.

C. The co-efficent of static friction between the tires and the track.

D. The co-efficent of static friction between the tires and the track.

Explanation:

You might be interested in
A swimmer does 3,560 J of work in 55 s. What is the swimmer’s power output? Round your answer to two significant figures. The po
Natasha2012 [34]
The value of the swimmer's power output is calculated by dividing the work done by the time it took for the work to be completed. From the given in this item,
                              P = 3560 J/ 55 s = 64.73 W
Rounding off to two significant figures will give us 65 W. 
6 0
2 years ago
Read 2 more answers
Imagine that the above hoop is a tire. the coefficient of static friction between rubber and concrete is typically at least 0.9.
Stels [109]
The hoop is attached.

Consider that the friction force is given by:
F = μ·N
   = μ·m·g·cosθ

We also know, considering the forces of the whole system, that:
F = -m·a + m·g·sinθ
and
a = (1/2)·<span>g·sinθ

Therefore:
</span>-(1/2)·m·g·sinθ + m·g·sinθ = <span>μ·m·g·cosθ
</span>(1/2)·m·g·sinθ = <span>μ·m·g·cosθ
</span>μ = (1/2)·m·g·sinθ / <span>m·g·cosθ
   = </span>(1/2)·tanθ

Now, solve for θ:
θ = tan⁻¹(2·μ)
   = tan⁻¹(2·0.9)
   = 61°

Therefore, the maximum angle <span>you could ride down without worrying about skidding is 61°.</span>

5 0
2 years ago
A ball of mass m is found to have a weight Wx on Planet X. Which of the following is a correct expression for the gravitational
Naya [18.7K]

Answer: B. The gravitational field strength of Planet X is Wx/m.

Explanation:

Weight is a force, and as we know by the second Newton's law:

F = m*a

Force equals mass times acceleration.

Then if the weight is:

Wx, and the mass is m, we have the equation:

Wx = m*a

Where in this case, a is the gravitational field strength.

Then, isolating a in that equation we get:

Wx/m = a

Then the correct option is:

B. The gravitational field strength of Planet X is Wx/m.

4 0
2 years ago
Two identical objects A and B fall from rest from different heights to the ground. If object B takes twice as long as A to reach
aivan3 [116]
I believe this ratio is 4:1 due to the inverse square law
4 0
2 years ago
Read 2 more answers
Bill leaves his 60 W desk lamp on every day, including weekends, for eight hours. After one month (30 days), how much total ener
maxonik [38]

' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.

That's all the physics we need to know to answer this question.
The rest is just arithmetic.

(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)

= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)

= 51,840,000 joules
__________________________________

Wait a minute !  Hold up !  Hee haw !  Whoa ! 
Excuse me.  That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's

(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)

= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)

= 14.4 kW·hour

Rounded to the nearest whole number:

14 kWh

7 0
2 years ago
Other questions:
  • In an experiment the chemical reaction between a piece of aluminum foil and Copper(II)Chloride solution in a beaker is observed.
    12·2 answers
  • Juan was wearing a bright red shirt in a very dark room. What color did his shirt appear to the people with him in the room? A)
    6·2 answers
  • Part F - Example: Finding Two Forces (Part I)
    5·1 answer
  • A particle decelerates uniformly from a speed of 30 cm/s to rest in a time interval of 5.0 s. It then has a uniform acceleration
    10·1 answer
  • The absolute pressure, in kilopascals, a depth 10m below sea level is most nearly?
    12·1 answer
  • Solar wind particles can be captured by the Earth's magnetosphere. When these particles spiral down along the magnetic field int
    5·1 answer
  • Suppose the truck that’s transporting the box In Example 6.10 (p. 150) is driving at a constant speed and then brakes and slows
    15·1 answer
  • cicadas produce a sound that has a frequency of 123 Hz. what is the wavelength of this sound in the air? the speed of sound in a
    15·1 answer
  • Two students are playing paddle ball with a 5 kg spongy ball. If the ball is thrown at the batter with a speed of 5 m/s and boun
    15·1 answer
  • A projectile of mass 0.2 kg and an initial velocity of 50 m/s collides with the end of a blade attached to a turbine. The rotati
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!