As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
<span>All soils have completely different horizon patterns.</span>
observer is standing at distance d = 60 m south from the intersection
cyclist is travelling at speed v = 10 m/s
now after t = 8 s its displacement from intersection is given by

so the position of cyclist makes an angle with the observer

now the component of velocity of cyclist along the line joining its position with the observer is given as

here



so at this instant cyclist is moving away with speed 8 m/s
Answer:
A=0.199
Explanation:
We are given that
Mass of spring=m=450 g=
Where 1 kg=1000 g
Frequency of oscillation=
Total energy of the oscillation=0.51 J
We have to find the amplitude of oscillations.
Energy of oscillator=
Where
=Angular frequency
A=Amplitude

Using the formula



Hence, the amplitude of oscillation=A=0.199
Answer:
density is
Mg/µL
Explanation:
given data
density of nuclear =
kg/m³
1 ml = 1 cm³
to find out
density of nuclear matter in Mg/µL
solution
we know here
1 Mg = 1000 kg
so
1 m³ is equal to
cm³
and here 1 cm³ is equal to 1 mL
so we can say 1 mL is equal to 10³ µL
so by these we can convert density
density =
kg/m³
density =
kg/m³ ×
Mg/µL
density =
Mg/µL