answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lena [83]
1 year ago
14

Eating 2500 Cal every day a friend of mine maintains a stable weight of 70 kg. One day, after eating 3500 Cal, he decided to do

extra exercise to avoid gaining weight. He was doing jumps: he leaves the ground with a speed of 3.3m/s at every jump. Assuming that his body turns energy to mechanical work with a 25 % efficiency, how many jumps he will have to make g
Physics
1 answer:
Kaylis [27]1 year ago
4 0

Answer:

Explanation:

Calories to be burnt = 3500 - 2500 = 1000 Cals .

Efficiency of conversion to mechanical work  is 25 % .

Work needed to burn this much of Cals = 1000 x 100 / 25 = 4000 Cals.

4000 Cals = 4.2 x 4000 = 16800 J  .

Work done in one jump = kinetic energy while jumping

= 1/2 m v²

= .5 x 70 x 3.3²

= 381.15 J .

Number of jumps required = 16800 / 381.15

= 44 .

You might be interested in
The following represents a process used to assemble a chair with an upholstered seat. stationsa, b, and c make the seat; station
Mekhanik [1.2K]

There are three questions here:


A. The possible daily output of this process if there is 8 processing time each day?


the time it takes to assemble a chair in seconds = A + B + C + J + K + L + X + Y + Z  

which is equal to = 38 + 34 + 35 + 32 + 30 + 34 + 22 + 18 + 20 =263 per chair



Processing hours = 8 hours x 60 minutes x 60 seconds

= 8 x 60 x 60


= 480 x 60 = 28,800 seconds is available in an 8 hr day.



28,800 / 263 =109.5057034220532


Therefore, It is possible to make 109 chairs in an 8 hour day.



B. Given your output rate in above, what is the efficiency of the process?


The time it takes to assemble a chair in seconds = A+ B + C + J + K + L + X + Y + Z.


= 34 + 34 + 34 + 30 + 30 + 30 + 22 + 18 + 20 = 252.6315789473684 per chair


A total of 252 per chair


Processing hours = 8 hours x 60 minutes x 60 seconds


= 8 x 60 x 60


= 480 x 60 = 28,800 seconds is available in an 8 hour day


= 28,000 / 252 = 114.2857142857143114 chairs


= 109/114 x 100 = 95.6140350877193


Therefore, the efficiency of making the chair is 95.61%


C. What is the flow time of the process?


Flow time is the period that it takes a completed chair to flow through the process from the beginning assemblage step to the last step. Take note that ABC and JKL are parallel legs in the process, and as a result both do not include to flow time to the procedure. In addition, Flow time comprises both pass time and run time at each position in the procedure.

7 0
2 years ago
Drag the tiles to the correct boxes to complete the pairs. Match the sentences with the steps of the scientific method
Assoli18 [71]

Solution:

Make an Observation - An indoor plant in a dark room withers faster than the same plant in a room with ample sunlight.

Ask a question- Why do certain indoor plants die faster based on where they are placed in the house?

State a hypothesis- Sunlight is probably essential for plants to grow and live.

Run an experiment- Get two potted plants. Cover one with black paper. Place both plants outside in sunlight. See what happens to each plant after one week.

Analyze the results-The plant in the pot with black paper withered. The other plant was healthy.

Communicate the results to others - Plants need sunlight to make food so they can live.

4 0
2 years ago
A 0.300kg glider is moving to the right on a frictionless, ­horizontal air track with a speed of 0.800m/s when it makes a head-o
e-lub [12.9K]

Answer:

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

0.010935 J

0.0858675 J

Explanation:

m_1 = Mass of first glider = 0.3 kg

m_2 = Mass of second glider = 0.15 kg

u_1 = Initial Velocity of first glider = 0.8 m/s

u_2 = Initial Velocity of second glider = 0 m/s

v_1 = Final Velocity of first glider

v_2 = Final Velocity of second glider

As momentum and Energy is conserved

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

{\tfrac {1}{2}}m_{1}u_{1}^{2}+{\tfrac {1}{2}}m_{2}u_{2}^{2}={\tfrac {1}{2}}m_{1}v_{1}^{2}+{\tfrac {1}{2}}m_{2}v_{2}^{2}

From the two equations we get

v_{1}=\frac{m_1-m_2}{m_1+m_2}u_{1}+\frac{2m_2}{m_1+m_2}u_2\\\Rightarrow v_1=\frac{0.3-0.15}{0.3+0.15}\times 0.8+\frac{2\times 0.15}{0.3+0.15}\times 0\\\Rightarrow v_1=0.27\ m/s

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

v_{2}=\frac{2m_1}{m_1+m_2}u_{1}+\frac{m_2-m_1}{m_1+m_2}u_2\\\Rightarrow v_2=\frac{2\times 0.3}{0.3+0.15}\times 0.8+\frac{0.3-0.15}{0.3+0.15}\times 0\\\Rightarrow v_2=1.067\ m/s

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

Kinetic energy is given by

K=\frac{1}{2}m_1v_1^2\\\Rightarrow K=\frac{1}{2}0.3\times 0.27^2\\\Rightarrow K=0.010935\ J

Final kinetic energy of first glider is 0.010935 J

K=\frac{1}{2}m_2v_2^2\\\Rightarrow K=\frac{1}{2}0.15\times 1.07^2\\\Rightarrow K=0.0858675\ J

Final kinetic energy of second glider is 0.0858675 J

6 0
2 years ago
You are given two rectangular blocks of shiny metal, Block A and Block B, and are asked to determine which one will float in a b
vladimir2022 [97]

Answer:

Explanation:

Volume of block A = 10 x 6 x 1 = 60 cm³

Mass of block A = 630 g

density of mass A = mass / density

= 630 / 60 = 10.5g / cm³

Volume of block B = 5 x 5 x 3 = 75 cm³

Mass of block A = 604 g

density of mass A = mass / density

= 604 / 75 = 8.05 g / cm³

Since density of both A and B are less than that of mercury , both will float in mercury.

7 0
2 years ago
If a ball was thrown upward at 46.3 m/s how long would the ball stay in the air
galben [10]
V = Vo + a.t



The ball is against the vector of gravity. Then, the gravity will be negative.

0 = 46,3  + (-9.8).t \\ 
t =   \frac{46.3}{9.8}  \\ 
t \approx 4.72 



The ball will stop in the air after approx. 4.72 seconds. And will take the same time to hit the ground.

It will stay approx. 9.44 seconds in the air.
8 0
1 year ago
Other questions:
  • A 31.0 kg child on a swing reaches a maximum height of 1.92 m above their rest position.
    12·1 answer
  • What are the approximate boiling points for the c2, c4, c6, and c8 alkanes?
    8·1 answer
  • A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in
    5·1 answer
  • In a fusion reaction, the nuclei of two atoms join to form a single atom of a different element. In such a reaction, a fraction
    5·1 answer
  • The motion of a particle connected to a spring is described by x = 10 sin (pi*t). At
    8·1 answer
  • An electron is projected with an initial speed of 3.9 × 105 m/s directly toward a proton that is fixed in place. If the electron
    14·1 answer
  • A 620-g object traveling at 2.1 m/s collides head-on with a 320-g object traveling in the opposite direction at 3.8 m/s. If the
    8·2 answers
  • Technician A says that the use of some RTV sealants to seal components on an engine can damage the oxygen sensor. Technician B s
    6·1 answer
  • Adam observed properties of four different waves and recorded observations about the frequency and volume of each one in his cha
    10·1 answer
  • If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!