Answer:
The net force on the stump is 1000 N.
Explanation:
Given that,
Force 1 acting on the truck,
(due north)
Force 2 acting on the truck,
(due west)
We need to find the net force on the stump. We know that force is a vector quantity. The net force on the stump is given by the the resultant force. It is given by :


F = 1000 N
So, the net force on the stump is 1000 N. Hence, this is the required solution.
Answer:
3349J/kgC
Explanation:
Questions like these are properly handled having this fact in mind;
Quantity of heat = mcΔ∅
m = mass of subatance
c = specific heat capacity
Δ∅ = change in temperature
m₁c₁(∅₂-∅₁) = m₂c₂(∅₁-∅₃)
m₁ = mass of block = 500g = 0.5kg
c₁ = specific heat capacity of unknown substance
∅₂ = block initial temperature = 50oC
∅₁ = equilibrium temperature of block and water after mix= 25oC
m₂= mass of water = 2kg
c₂ = specific heat capacity of water = 4186J/kg C
∅₃ = intial temperature of water = 20oC
0.5c₁(50-25) = 2 x 4186(25-20)
And we can find c₁ which is the unknown specific heat capacity
c₁ =
= 3348.8J/kg C≅ 3349J/kg C
The data for the first part of the experiment support the first hypothesis. As the force applied to the cart increased, the acceleration of the cart increased. Since the increase in the applied force caused the increase in the cart's acceleration, force and acceleration are directly proportional to each other, which is in accordance with Newton's second law.
Answer:
(D) It is moving at a constant speed
Explanation:
Before t = 1s. Due to the force, albeit small, acting on the object, since there's no static friction stopping the object from moving, this mass object would have a constant acceleration and it's velocity would be increasing.
According to Newton's 1st law, an object will stay at a constant speed if the net force acting on it is 0. After t = 1s, horizontally speaking there's no other force exerting on the mass object. There is no friction force at play here as the surface is frictionless.
Therefore the correct statement is (D) It is moving at a constant speed