Answer:
a. Springs oscillate with the same frequency
Explanation:
As they both are in the same height at equilibrium, so
weight of ball must be balanced with spring force, that is
k×x=mg
k= stiffness constant of spring
x=distance stretched
g= acceleration due to gravity
so, we can write
k/m=g/x
as the g is a constant and they stretched to same distance x so the g/x term becomes constant and

and k/m is same for both the springs so they will oscillate at the same frequency.
hence option a is correct.
<span>1.5 minutes per rotation.
The formula for centripetal force is
A = v^2/r
where
A = acceleration
v = velocity
r = radius
So let's substitute the known values and solve for v. So
F = v^2/r
0.98 m/s^2 = v^2/200 m
196 m^2/s^2 = v^2
14 m/s = v
So we need a velocity of 14 m/s. Let's calculate how fast the station needs to spin.
Its circumference is 2*pi*r, so
C = 2 * 3.14159 * 200 m
C = 1256.636 m
And we need a velocity of 14 m/s, so
1256.636 m / 14 m/s = 89.75971429 s
Rounding to 2 significant digits gives us a rotational period of 90 seconds, or 1.5 minutes.</span>
Solution:
Make an Observation - An indoor plant in a dark room withers faster than the same plant in a room with ample sunlight.
Ask a question- Why do certain indoor plants die faster based on where they are placed in the house?
State a hypothesis- Sunlight is probably essential for plants to grow and live.
Run an experiment- Get two potted plants. Cover one with black paper. Place both plants outside in sunlight. See what happens to each plant after one week.
Analyze the results-The plant in the pot with black paper withered. The other plant was healthy.
Communicate the results to others - Plants need sunlight to make food so they can live.
Acceleration is the change in velocity divided by time. The change in velocity is -30m/s and time is 5s. If you divide -30m/s by 5s, you get -6m/s<span>².</span>