answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
2 years ago
10

A 1.0 kg block is attached to an unstretched

Physics
1 answer:
KonstantinChe [14]2 years ago
4 0

Answer:

Change in  potential energy of the block-spring-Earth

system between Figure 1 and Figure 2 = 1 Nm.

Explanation:

Here, spring constant, k  = 50 N/m.

given block comes down eventually 0.2 m below.

here, g = 10 m/s.

let block be at a height h above the ground in figure 1.

⇒In figure 2, potential energy of the block-spring-Earth

system = m×g×(h - 0.2) + 1/2× k × x². where, x = change in spring length.

⇒ Change in  potential energy of the block-spring-Earth

system between Figure 1 and Figure 2 = (m×g×(h - 0.2)) - (1/2× k × x²)

              =  (1×10×0.2) - (1/2×50×0.2×0.2) = 1 Nm.

You might be interested in
Andy is waiting at the signal. As soon as the light turns green, he accelerates his car at a uniform rate of 8.00 meters/second2
Tatiana [17]
You can reason it out like this:

-- The car starts from rest, and goes 8 m/s faster every second.

-- After 30 seconds, it's going (30 x 8) = 240 m/s.

-- Its average speed during that 30 sec is  (1/2) (0 + 240) = 120 m/s

-- Distance covered in 30 sec at an average speed of 120 m/s

                                                                           =  3,600 meters .
___________________________________

The formula that has all of this in it is the formula for
distance covered when accelerating from rest:

       Distance = (1/2) · (acceleration) · (time)²

                       = (1/2) ·      (8 m/s²)     · (30 sec)²

                       =      (4 m/s²)          ·      (900 sec²)

                       =            3600 meters.

_________________________________

When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.

When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.

How does he do that ?

By accelerating at 8 m/s².  That's about 0.82 G  !

He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph ! 

He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
3 0
2 years ago
If you were to triple the size of the Earth (R = 3R⊕) and double the mass of the Earth (M = 2M⊕), how much would it change the g
EastWind [94]

Answer:

Decreased by a factor of 4.5

Explanation:

"We have Newton formula for attraction force between 2 objects with mass and a distance between them:

F_G = G\frac{M_1M_2}{R^2}

where G =6.67408 × 10^{-11} m^3/kgs^2 is the gravitational constant on Earth. M_1, M_2 are the masses of the object and Earth itself. and R distance between, or the Earth radius.

So when R is tripled and mass is doubled, we have the following ratio of the new gravity over the old ones:

\frac{F_G}{f_g} = \frac{G\frac{M_1M_2}{R^2}}{G\frac{M_1m_2}{r^2}}

\frac{F_G}{f_g} = \frac{\frac{M_2}{R^2}}{\frac{m_2}{r^2}}

\frac{F_G}{f_g} = \frac{M_2}{R^2}\frac{r^2}{m_2}

\frac{F_G}{f_g} = \frac{M_2}{m_2}(\frac{r}{R})^2

Since M_2 = 2m_2 and r = R/3

\frac{F_G}{f_g} = \frac{2}{3^2} = 2/9 = 1/4.5

So gravity would have been decreased by a factor of 4.5  

8 0
2 years ago
A child is running his 46.1 g toy car down a ramp. The ramp is 1.73 m long and forms a 40.5° angle with the flat ground. How lon
frosja888 [35]

Answer:

t=0.704s

Explanation:

A child is running his 46.1 g toy car down a ramp. The ramp is 1.73 m long and forms a 40.5° angle with the flat ground. How long will it take the car to reach the bottom of the ramp if there is no friction?

from newton equation of motion , we look for the y component of the speed and look for the x component of the speed. we can then find the resultant of the speed

V^{2} =u^{2} +2as

Vy^2=0+2*9.8*1.73sin40.5

Vy^2=22.021

Vy=4.69m/s

Vx^2=u^2+2*9.81*cos40.5

Vy^2=25.81

Vy=5.08m/s

V=(Vy^2+Vx^2)^0.5

V=47.71^0.5

V=6.9m/s

from newtons equation of motion we know that force applied is directly proportional to the rate of change in momentum on a body.

f=force applied

v=velocity final

u=initial velocity

m=mass of the toy, 0.046

f=ma

f=m(v-u)/t

v=u+at

6.9=0+9.8t

t=6.9/9.81

t=0.704s

4 0
2 years ago
What magnitude charge creates a 1.0 n/c electric field at a point 1.0 m away?
Stolb23 [73]

Answer:

1.1\cdot 10^{-10}C

Explanation:

The electric field produced by a single point charge is given by:

E=k\frac{q}{r^2}

where

k is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have

E = 1.0 N/C (magnitude of the electric field)

r = 1.0 m (distance from the charge)

Solving the equation for q, we find the charge:

q=\frac{Er^2}{k}=\frac{(1.0 N/c)(1.0 m)^2}{9\cdot 10^9 Nm^2c^{-2}}=1.1\cdot 10^{-10}C

8 0
2 years ago
A ship maneuvers to within 2.50 x 103 m of anisland's 1.80 x 103 m high mountain peak and fires aprojectile at an enemy ship 6.1
const2013 [10]

Answer:

Distance between peak height (vertically) of projectile and mountain height = (2975.2 - 1800) = 1175.2 m

Distance between where the projectile lands and ship B = (3188.8 - 3110) = 8.8 m

Explanation:

Given the velocity and angle of shot of the projectile, one can calculate the range and maximum height attained by the projectile.

H = (v₀² Sin²θ)/2g

v₀ = initial velocity of projectile = 2.50 × 10² m/s = 250 m/s

θ = 75°, g = 9.8 m/s²

H = 250² (Sin² 75)/(2 × 9.8) = 2975.2 m

Range of projectile

R = v₀² (sin2θ)/g

R = 250² (sin2×75)/9.8

R = 250² (sin 150)/9.8 = 3188.8 m

Height of mountain = 1.80 × 10³ = 1800 m

Maximum height of projectile = 2975.2 m

Distance between peak height (vertically) of projectile and mountain height = 2975.2 - 1800 = 1175.2 m

Distance of ship B from ship A = 2.5 × 10³ + 6.1 × 10² = 2500 + 610 = 3110 m

Range of projectile = 3188.8 m

Distance between where the projectile lands and ship B = 3188.8 - 3110 = 8.8 m

8 0
2 years ago
Other questions:
  • Henry can lift a 200 N load 20 m up a ladder in 40 s. Ricardo can lift twice the load up one-half the distance in the same amoun
    14·2 answers
  • what did classical physics predict about electron flow as a result of light shining on a metal surface?
    8·1 answer
  • Samantha wants her friend to wear a bicycle helmet when they go cycling. She wants to explain how a bicycle is designed to provi
    10·2 answers
  • Two flat 4.0 cm × 4.0 cm electrodes carrying equal but opposite charges are spaced 2.0 mm apart with their midpoints opposite ea
    15·1 answer
  • A 2.80 kg mass is dropped from a height of 4.50 m. find its potential energy(PE) at the moment it is dropped. PLEASE HELP
    6·1 answer
  • At sea world, a 900 kg polar bear slides down a wet slide inclined at an angle of 25.0 to the horizontal. The coefficient of fri
    15·1 answer
  • In an attempt to impress its friends, an acrobatic beetle runs and jumps off the bottom step of a flight of stairs. The step is
    10·1 answer
  • The capacitors in each circuit are fully charged before the switch is closed. Rank, from longest to shortest, the length of time
    12·1 answer
  • Elias serves a volleyball at a velocity of 16 m/s. The mass of the volleyball is 0.27 kg. What is the height of the volleyball a
    14·1 answer
  • A particle is moving along the x-axis. Its position as a function of time is given as x=bt-ct^2a) What must be the units of the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!