Answer : The correct option is, (d) 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of copper = 
= specific heat of water = 
= mass of copper = 120 g
= mass of water = 300 g
= final temperature of mixture = 
= initial temperature of copper = ?
= initial temperature of water =
Now put all the given values in the above formula, we get:


Therefore, the temperature of the kiln was, 
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the block is 
The force constant of the spring is 
The amplitude is 
The time consider is 
Generally the angular velocity of this block is mathematically represented as

=> 
=> 
Given that the block undergoes simple harmonic motion the velocity is mathematically represented as

=> 
=> 
Answer:
Total Work done =0.65 joule
Explanation:
Work done is given Mathematically as
W=F *d
Where w=work done in joules
F=applied force
d= distance moved
The work done to move the toy accros the first meter is
W1=0.5*1
W1=0.5joule
The work done to move the toy across the next 2m at an angle of 30° is
.W2=0.5*2cos30
W2=0.5*2*0.154
W2=0.154joule
Hence total work done is
W1+W2=0.5+0.154
Total Work done =0.65 joule
Answer:
-209.42J
Explanation:
Here is the complete question.
A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn door, the cow walks from x = 0 to x = 6.9 m as you apply a force with x-component Fx=−[20.0N+(3.0N/m)x]. How much work does the force you apply do on the cow during this displacement?
Solution
The work done by a force W = ∫Fdx since our force is variable.
Since the cow moves from x₁ = 0 m to x₂ = 6.9 m and F = Fx =−[20.0N+(3.0N/m)x] the force applied on the cow.
So, the workdone by the force on the cow is
W = ∫₀⁶°⁹Fx dx = ∫₀⁶°⁹−[20.0N+(3.0N/m)x] dx
= ∫₀⁶°⁹−[20.0Ndx - ∫₀⁶°⁹(3.0N/m)x] dx
= −[20.0x]₀⁶°⁹ - [3.0x²/2]₀⁶°⁹
= -[20 × 6.9 - 20 × 0] - [3.0 × 6.9²/2 - 3.0 × 0²/2]
= -[138 - 0] - [71.415 - 0] J = (-138 - 71.415) J
= -209.415 J ≅ -209.42J
Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf