Answer:

Explanation:
Given that:
Absolute temperature of the body, 
- emissivity of the body,

<u>Using Stefan Boltzmann Law of thermal radiation:</u>

where:
(Stefan Boltzmann constant)
Now putting the respective values:


Answer:
Show attached picture
Explanation:
Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call
its internal resistance) and R indicates the resistance of the light bulb.
We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:
(1)
Both the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

Using Ohm's law,
, we can rewrite the previous equation as:

where
is the current in the meter
is the current in the bulb
Using (1), this equation becomes

so, the current in the meter is 1000 times less than through the bulb.
Answer:
Explanation:
40 divided by 10 then which would equal 4. Add the 1.0 , 2 ,and 15 together. Then multply the 60 by 18.0 after you are done dividing the answer is 3 with a remainder of 6.
The light bulb, it takes electrical energy and turns it into l<span>ight energy!</span>