Answer:
The value of tension on the cable T = 1065.6 N
Explanation:
Mass = 888 kg
Initial velocity ( u )= 0.8 
Final velocity ( V ) = 0
Distance traveled before come to rest = 0.2667 m
Now use third law of motion
=
- 2 a s
Put all the values in above formula we get,
⇒ 0 =
- 2 × a ×0.2667
⇒ a = 1.2 
This is the deceleration of the box.
Tension in the cable is given by T = F = m × a
Put all the values in above formula we get,
T = 888 × 1.2
T = 1065.6 N
This is the value of tension on the cable.
The force exerted on the car during this stop is 6975N
<u>Explanation:</u>
Given-
Mass, m = 930kg
Speed, s = 56km/hr = 56 X 5/18 m/s = 15m/s
Time, t = 2s
Force, F = ?
F = m X a
F = m X s/t
F = 930 X 15/2
F = 6975N
Therefore, the force exerted on the car during this stop is 6975N
NOTE: The given question is incomplete.
<u>The complete question is given below.</u>
The human eye contains a molecule called 11-cis-retinal that changes conformation when struck with light of sufficient energy. The change in conformation triggers a series of events that results in an electrical signal being sent to the brain. The minimum energy required to change the conformation of 11-cis-retinal within the eye is about 164 kJ/mole. Calculate the longest wavelength visible to the human eye.
Solution:
Energy (E) = 164 kJ/mole
E = 164 kJ/mole = 164 kJ /6.023 x 10²³
= 2.72 x 10⁻²² kJ = 2.72 x 10⁻¹⁹J
Planck's constant = 6.6 x 10⁻³⁴ J s,
Speed of light = 3.00 x 10⁸ m/s
Let the required wavelength be λ.
Formula Used: E = hc / λ
or, λ = hc / E
or, λ = (6.6 x 10⁻³⁴ J s)× (3.00 x 10⁸ m/s) / (2.72 x 10⁻¹⁹J)
or, λ = 7.28 x 10⁻⁷ m
or, λ = (7.28 x 10⁻⁷ m) ×( 1.0 x 10⁹ nm / 1.0 m)
or, λ = (7.28 x 10² nm)
or, λ = 728 nm
Hence, the required wavelength will be 728 nm.
Answer:
a)
b)
c)
d)
e)
Explanation:
Given that:
- initial speed of turntable,

- full speed of rotation,

- time taken to reach full speed from rest,

- final speed after the change,

- no. of revolutions made to reach the new final speed,

(a)
∵ 1 rev = 2π radians
∴ angular speed ω:

where N = angular speed in rpm.
putting the respective values from case 1 we've


(c)
using the equation of motion:

here α is the angular acceleration



(b)
using the equation of motion:





(d)
using equation of motion:



(e)
using the equation of motion:


