answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
2 years ago
7

A ball is thrown with a velocity of 35 meters per second at an angle of 30° above the horizontal. which quantity has a magnitude

of zero when the ball is at the highest point in its trajectory?
Physics
1 answer:
enot [183]2 years ago
5 0
The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is the vertical velocity.

In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity v_x=v_0 cos 30^{\circ}, where v_0=35 m/s
- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration g=9.81 m/s^2 directed downwards, and with initial velocity v_y=v_= sin 30^{\circ}. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height. 
You might be interested in
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6
Shalnov [3]

Answer:

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

Explanation:

A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.

A) What is the wavefunction y(x,t) for the standing wave that is produced?

B) In which harmonic is the standing wave oscillating?

C) What is the frequency of the fundamental oscillation?

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. lambda=2L/n

when comparing the wave equation with the general wave equation , we get the wavelength to be

2*pi*x/lambda=6.98x

lambda=0.9m

we use the equation

lambda=2L/n

n=number of harmonics

L=length of string

0.9=2(1.35)/n

n=2.7/0.9

n=3

third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

8 0
2 years ago
In a semiclassical model of the hydrogen atom, the electron orbits the proton at a distance of 0.053 nm. Part A What is the elec
Bezzdna [24]

Answer with Explanation:

We are given that

r=0.053 nm=0.053\times 10^{-9} m

1 nm=10^{-9} m

Charge on proton,q=1.6\times 10^{-19} C

a.We have to find the electric  potential of the proton at the position of the electron.

We know that the electric potential

V=\frac{kq}{r}

Where k=9\times 10^9

V=\frac{9\times 10^9\times 1.6\times 10^{-19}}{0.053\times 10^{-9}}

V=27.17 V

B.Potential energy of electron,U=\frac{kq_e q_p}{r}

Where

q_e=-1.6\times 10^{-19} c=Charge on electron

q_p=q=1.6\times 10^{-19} C=Charge on proton

Using the formula

U=\frac{9\times 10^9\times (-1.6\times 10^{-19}\times 1.6\times 10^{-19}}{0.053\times 10^{-9}}

U=-4.35\times 10^{-18} J

8 0
2 years ago
Most binary systems with an invisible companion contain a large, bright star and a small, dim star hidden by the light of its la
Vlada [557]

Answer:

Brain signals are converted

8 0
2 years ago
Do as physics instructor fred cauthen does and place a tennis ball close to and above the top of a basketball. drop the balls to
Ksivusya [100]

Answer:

after shock

creating a system for the conservation of the energy of the basketball ball and creating a system for the tennis ball only, the conservation of energy should be applied to each system independently

Explanation:

When the two balls fall they acquire the same speed since they are accelerated by the same force, their weight and the acceleration of the acceleration of gravity. When reaching the floor the mechanical energy of the system is conserved.

Upon reaching the floor, the first ball (basketball) collides with the floor, this process is very fast, at the end of the process the basketball comes out with a velicad up and collides with the much lighter tennis ball that is still descending .

we assume that the shocks are elastic, when solving the momentary and kinetic energy findings, we find the velocities after each shock

     

In this clash the tennis ball acquires a high kinetic speed with an upward direction that makes a very high height high. Again this shock is very fast and the tennis ball almost does not move.

Here we must separate the system, creating a system for the conservation of the energy of the basketball ball and another system for the tennis ball only, the conservation of energy should be applied to each system independently

Em₀ =K = 1/2 m v²

                    Em_{f} = U = m g h

As in the elastic shock the final speed of the tennis ball is approximately 2 vo, we can calculate the maximum height

                 m g h = 1/2 m (2v₀)²

                 h = 2 v₀²/g

To reconcile this with the conservation of energy we must calculate the energy for the tennis ball at two points, the first when the crash with the tennis ball ends and at the end point at its maximum height.

6 0
2 years ago
A 2.70 kg cat is sitting on a windowsill. The cat is sleeping peacefully until a dog barks at him. Startled, the cat falls from
Alchen [17]

Answer:

The speed of the cat when it hits the ground is approximately 7.586 meters per second.

Explanation:

By Principle of Energy Conservation and Work-Energy Theorem, we have that initial potential gravitational energy of the cat (U_{g}), in joules, is equal to the sum of the final translational kinetic energy (K), in joules, and work losses due to air resistance (W_{l}), in joules:

U_{g} = K +W_{l} (1)

By definition of potential gravitational energy, translational kinetic energy and work, we expand the equation presented above:

m \cdot g\cdot h = \frac{1}{2}\cdot m \cdot v^{2}+W_{l} (2)

Where:

m - Mass of the cat, in kilograms.

g - Gravitational acceleration, in meters per square second.

h - Initial height of the cat, in meters.

v - Final speed of the cat, in meters per second.

If we know that m = 2.70\,kg, g = 9.807\,\frac{m}{s^{2}}, h = 5.20\,m and W_{l} = 120\,J, then the final speed of the cat is:

v = \sqrt{\frac{2\cdot (m\cdot g\cdot h-W_{l})}{m} }

v = \sqrt{2\cdot g\cdot h-\frac{W_{l}}{m} }

v \approx 7.586\,\frac{m}{s}

The speed of the cat when it hits the ground is approximately 7.586 meters per second.

4 0
2 years ago
Other questions:
  • Find the acceleration of a body whose velocity increases from 11ms-1 to 33ms-1 in 10 seconds
    8·2 answers
  • How would you solve for x I cant remember right now 4x+6x=9x-10
    9·2 answers
  • somewhere between the earth and the moon is a point where the gravitational attraction of the earth is canceled by the gravitati
    14·1 answer
  • A box of mass 8 kg slides across a frictionless surface at an initial speed 1.5 m/s into a relaxed spring of spring constant 69
    12·1 answer
  • In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acce
    14·1 answer
  • You are wallpapering two walls of a room. One wall measures 15 ft by 12 ft and the other measures 9 ft by 12 ft. The wall paper
    10·1 answer
  • Two Polaroids are aligned so that the initially unpolarized light passing through them is a maximum. At what angle should one of
    5·1 answer
  • Loss of traction between the rear wheels and road surfaces like ice, sand, or gravel results in what is called _______________.
    8·1 answer
  • As a 15000 kg jet plane lands on an aircraft carrier, its tail hook snags a cable to slow it down. The cable is attached to a sp
    14·1 answer
  • Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 72.0° between them. Wha
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!