Answer:
P = ρRT/M
Explanation:
Ideal gas equation is given as follows generally:
PV = nRT (1)
P = pressure in the containing vessel
V = volume of the containing vessel
n = number of moles
R = gas constant
T = temperature in K
n = m/M
m = mass of the gas contained in the vessel in g
M = molar mass in g/mol
ρ = m/V
Density of the gas = ρ
Substituting for n in (1)
PV = mRT/M. (2)
Dividing equation (2) through by V
P = m/V ×RT/M
P = ρRT/M
Answer:
0.0000045 s
Explanation:
f = Frequency = 8 MHz
Clock cycle is given by

Time taken for 12 clock cycles

Time taken per instruction is 0.0000015 s
In reading and displaying information it requires 3 processes
1 for reading, 1 for searching and 1 for displaying.

Time taken is 0.0000045 s
Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
Formation of an insoluble solid
Explanation:
One of the remarkable visible signs that indicates a precipitation reaction when two solutions are mixed is the formation of an insoluble solid. The insoluble solid formed is the precipitate.
- Precipitates usually forms in single replacement reactions and double replacement or double decomposition reactions.
- They form when two soluble compounds react. One of the product is an insoluble solid in the solution called the precipitate.
- The solubility table helps to predict whether precipitates forms in a reaction.
Learn more:
precipitate brainly.com/question/8896163
#learnwithBrainly
Answer:
The frequency of the photon decreases upon scattering
Explanation:
Here we note that when a photon is scattered by a charged particle, it is referred to as Compton scattering.
Compton scattering results in a reduction of the energy of the photon and hence an increase in the wavelength (from λ to λ') of the photon known as Compton effect.
Therefore, since the wavelength increases, we have from
λf = λ'f' = c
f = c/λ
Where:
f and f' = The frequency of the motion of the photon before and after the scattering
c = Speed of light (constant)
We have that the frequency, f, is inversely proportional to the wavelength, λ as follows;
f = c/λ
As λ = increases, and c is constant, f decreases, therefore, the frequency of the photon decreases upon scattering.