The answers are:
a) 
b) 
Why?
It seems that you forgot to write the questions of the problem, however, in order to help you, I will try to complete it.
The questions are:
a) How much work does the heart do in a day?
b) What is its power output in watts?
So, solving we have:
We need to convert from liter to cubic meters in order to use the given information, so:

Also, we need to find the mass given the density of the blood.

Now, calculating how much work does the heart do in a day, we have:

Then, calculating what is the power output and its horsepower, we have:

Have a nice day!
Answer:
If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
R₁ = Resistance of first resistor
R₂ = Resistance of second resistor
V = Voltage of battery = 12 V
I = Current = 0.33 A (series)
I = Current = 1.6 A (parallel)
In series

In parallel


Solving the above quadratic equation


∴ If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
To solve this problem, we must imagine that Jim’s initial
position, the position of the rock, and Jim’s final position all connects to
form a triangle. Now we can imagine that the triangle is a right triangle with
the 90° angle on the initial position.
The angle of 30° is directly opposite to the length of his
total stride while the width of the river is the side adjacent to the angle.
Therefore can use the tan function to solve for the width of the river:
tan θ = opposite side / adjacent side
tan 30 = total stride distance / width of river
where total stride distance = 65 * 0.8 = 52 m
width of river = 52 m / tan 30
<span>width of river = 90.07 m</span>
I am pretty sure the answer would be too stretch