answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
2 years ago
12

When 30 V is applied across a resistor it generates 600 W of heat: what is the magnitude of its resistance?

Physics
1 answer:
grandymaker [24]2 years ago
3 0

Answer:

<h2>1.5 ohms</h2>

Explanation:

Power is expressed as P = V²/R

R = resistance

V = supplied voltage

Given P = 600W and V = 30V

R = V²/P

R = 30²/600

R = 900/600

R = 1.5ohms

magnitude of its resistance is 1.5ohms

You might be interested in
Which of the following are scalar quantities? select all that apply
dolphi86 [110]

Answer:

1, 4, 5, see the explanation below

Explanation:

We must remember that scalar magnitudes are distinguished by having only a physical quantity, that is, they have no sense or direction as an example of scalar quantities, we find mass, temperature, energy, specific heat, power among others.

1 . 150 [grams] , because is a mass =  scalar

4. 5 kilometer [race], is an amount = scalar

5. 34 steps, is an amount = scalar

Number 2, and 3 are vectors because they have amount and direction.

3 0
2 years ago
Imagine you derive the following expression by analyzing the physics of a particular system: M= (mv2r)(mGr2). Simplify the expre
alex41 [277]

Answer:

The simplified expression is M  =  \frac{v^2 r}{G}

Explanation:

From the question we are told that  

     M  = \frac{ \frac{m v^2}{r} }{\frac{ mG}{r^2 } }

So simplifying we have

    M  =    \frac{m v^2}{r} *  \frac{r^2 }{ mG }

    M  =  \frac{v^2 r}{G}

Thus the simplified formula is M  =  \frac{v^2 r}{G}

3 0
2 years ago
A 35 g steel ball is held by a ceiling-mounted electromagnet 4.0 m above the floor. A compressed-air cannon sits on the floor, 4
HACTEHA [7]

Answer:

7.9 m/s

Explanation:

When both balls collide, they have spent the same time for their motions.

Motion of steel ball

This is purely under gravity. It is vertical.

Initial velocity, <em>u </em>= 0 m/s

Distance, <em>s</em> = 4.0 m - 1.2 m = 2.8 m

Acceleration, <em>a</em> = g

Using the equation of motion

s = ut+\frac{1}{2}at^2

2.8 \text{ m} = 0+\dfrac{gt^2}{2}

t = \sqrt{\dfrac{5.6}{g}}

Motion of plastic ball

This has two components: a vertical and a horizontal.

The vertical motion is under gravity.

Considering the vertical motion,

Initial velocity, <em>u </em>= ?

Distance, <em>s</em> = 1.2 m

Acceleration, <em>a</em> = -<em>g                   </em> (It is going up)

Using the equation of motion

s = ut+\frac{1}{2}at^2

1.2\text{ m} = ut-\frac{1}{2}gt^2

Substituting the value of <em>t</em> from the previous equation,

1.2\text{ m} = u\sqrt{\dfrac{5.6}{g}}-\dfrac{1}{2}\times g\times\dfrac{5.6}{g}

u\sqrt{\dfrac{5.6}{g}} = 4.0

Taking <em>g</em> = 9.8 m/s²,

u = \dfrac{4.0}{0.756} = 5.29 \text{ m/s}

This is the vertical component of the initial velocity

Considering the horizontal motion which is not accelerated,

horizontal component of the initial velocity is horizontal distance ÷ time.

u_h = \dfrac{4.4\text{ m}}{0.756\text{ s}} = 5.82\text{ m/s}

The initial velocity is

v_i = \sqrt{u^2+u_h^2} = \sqrt{(5.29\text{ m/s})^2+(5.82\text{ m/s})^2} = 7.9 \text{ m/s}

4 0
2 years ago
flat block is pulled along a horizontal flat surface by a horizontal rope perpendicular to one of the sides. The block measures
Lelu [443]

Answer:

Answered

Explanation:

v= 1 m/s

A= 1 m^2

m= 100 kg

y= 1 mm

μ = ?

ζ= viscosity of  SAE 20 crankcase oil of 15° C= 0.3075 N sec/m^2

forces acting on the block are  

                                 F_s   ←    ↓     →F_f

                                                mg

N= mg

F_s=  shear force = ζAv/y        F_f= friction force = μN

now in x- direction F_s= F_f

ζAv/y  =  μN

0.3075×1×1×1/1×10^{-3} = μ×100

⇒μ=0.313 (coefficient of sliding friction for the block)

Now, as the velocity is increased shear force also increases and due to this frictional force also increases.

Now, to compensate this frictional force friction coefficient must increase

as v∝μ

7 0
2 years ago
Read 2 more answers
What is the x component of (+3m)ι^ And (+3m/s) i^?
expeople1 [14]
The "i" component of a vector is in the x-direction. Therefore, the x-component is 3 m/s.
4 0
2 years ago
Other questions:
  • The pull of the moon on Earth's tidal bulge is causing _____. the earth to gradually rotate faster the earth to slowly expand in
    11·2 answers
  • A rightward force is applied to a 6-kg object to move it across a rough surface at a constant velocity. The object encounters 25
    13·1 answer
  • A 92-kg skier is sliding down a ski slope that makes an angle of 30 degrees above the horizontal direction. The coefficient of k
    6·1 answer
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • A physics department has a Foucault pendulum, a long-period pendulum suspended from the ceiling. The pendulum has an electric ci
    10·1 answer
  • The circuit below represents four resistors connected to a 12-volt source. What is the total current in the circuit? 4.0Ω 6.0Ω 1
    11·2 answers
  • Consider a steel tape measure with cross-sectional area, A = 0.0625 inches squared, and length L = 3, 600 inches at room tempera
    8·1 answer
  • Rita has two small containers, one holding a liquid and one holding a gas. Rita transfers the substances to two larger container
    11·2 answers
  • What type of equilibrium is guaranteed by each condition of equilibrium
    12·1 answer
  • A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn doo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!