Part a)
As we know that

here we know that
P1 = 20 bar
V1 = 0.5 m^3
V2 = 2.75 m^3
from above equation


so final state pressure will be 2 bar
Part b)
now in order to find the work done





<span>v = 25.0 km/</span><span>h = 25*5/18 m/s = 6.94 m/s
</span><span>centripetal force = mv²/r = 1275*6.94²/40 = 1537.18 N </span>
The roadway with the highest number of hazards is <span>city streets</span>
Answer:
The distance travel by block before coming to rest is 0.122 m
Explanation:
Given:
Mass of block
kg
Initial speed of block

Final speed of block

Coefficient of kinetic friction 
Ramp inclined at angle
28.4°
Using conservation of energy,
Work done by frictional force is equal to change in energy,

Where 



m
Therefore, the distance travel by block before coming to rest is 0.122 m
Answer:

Explanation:
We are given that
Initial velocity=u=18ft/s
Final velocity,v=38ft/s
Time=t=3 s
We have to find the average acceleration over that 3 s period.
We know that
Average acceleration,a=
Using the formula
Average acceleration,a=
Average acceleration,a=
Average acceleration,a=
Hence, the average acceleration=